
CnC-PRAC: Coalesce, not Cache, Per Row Activation Counts for an
Efficient in-DRAM Rowhammer Mitigation

Chris S. Lin† Jeonghyun Woo* Prashant J. Nair* Gururaj Saileshwar†

†University of Toronto *University of British Columbia
shaopenglin@cs.toronto.edu, jhwoo36@ece.ubc.ca, prashantnair@ece.ubc.ca, gururaj@cs.toronto.edu

JEDEC has introduced the Per Row Activation Counting
(PRAC) framework for DDR5 and future DRAMs to enable pre-
cise counting of DRAM row activations using per-row activation
counts. While recent PRAC implementations enable holistic miti-
gation of Rowhammer attacks, they impose slowdowns of up to
10% due to the increased DRAM timings for performing a read-
modify-write of the counter. Alternatively, recent work, Chronus,
addresses these slowdowns, but incurs energy overheads due to
the additional DRAM activations for counters.

In this paper, we propose CnC-PRAC, a PRAC implementation
that addresses both performance and energy overheads. Unlike
prior works focusing on caching activation counts to reduce their
overheads, our key idea is to reorder and coalesce accesses to
activation counts located in the same physical row. Our design
achieves this by decoupling counter access from the critical path
of data accesses. This enables optimizations such as buffering
counter read-modify-write requests and coalescing requests to
the same row. Together, these enable a reduction in row acti-
vations for counter accesses by almost 75%-83% compared to
state-of-the-art solutions like Chronus and enable a PRAC im-
plementation with negligible slowdown and a minimal dynamic
energy overhead of 0.84%-1% compared to insecure DDR5 DRAM.

1. Introduction

Aggressive scaling of DRAM has introduced security vulnera-
bilities such as Rowhammer (RH) [1], a data disturbance phe-
nomenon where frequent row activations induce charge leak-
age and bit flips in adjacent rows. These faults can lead to
severe security issues, including privilege escalation and data
corruption [2–8]. With continued scaling, the Rowhammer
threshold (TRH) – the number of activations needed to induce
bit flips – has dropped from 70K [1] to 4.8K [9], and is expected
to decline further, worsening the threat.

Tomitigate RH, the DRAM industry has developed a series of
in-DRAM defenses, the most recent being Per Row Activation
Counting (PRAC) [10], introduced in the DDR5 specification.
PRAC addresses both the space and time challenges associ-
ated with RH mitigation. It provides dedicated space within
DRAM to maintain activation counters for each row, which
are incremented on every access. It also enables the DRAM
to request mitigation time by asserting an Alert signal to the
memory controller, which initiates the Alert Back-Off (ABO)
protocol. The controller can issue mitigation commands (RFM)
to refresh vulnerable rows through this protocol. PRAC thus
establishes a principled interface for RH mitigation. However,
current PRAC-based implementations incur performance and

energy overheads that hinder widespread adoption.
State-of-the-art PRAC implementations suffer from signifi-

cant inefficiency due to the read-modify-write operations for
updates to counters stored within the DRAM rows. These
updates occur every time a row is activated and precharged,
causing an increase in the DRAM row precharge latency (tRP)
and row cycle time (tRC), and causing a slowdown in overall
system performance. Consequently, state-of-the-art PRAC im-
plementations, such as MOAT [11] and QPRAC [12], incur a
slowdown of almost 10% [13] compared to an insecure baseline
DRAM, due to the increased DRAM timings.

Alternatively, PRAC implementations, such as Chronus [13],
attempt to mitigate these overheads by reorganizing the acti-
vation counter storage. Chronus stores counters in a DRAM
sub-array separate from the data sub-arrays, and utilizes sub-
array level parallelism [14] to access and update counters in
parallel to the data-access, without increasing DRAM timings.
While Chronus effectively reduces the performance slowdown
associated with PRAC, it still incurs energy overheads. Under a
closed-row policy, Chronus requires an additional counter row
activation for each data row activation that increases energy
consumption. Thus, existing solutions either suffer from high
slowdowns or energy overheads that limit their practicality.

In this work, we propose a PRAC implementation to address
both performance and energy drawbacks in existing works.
We build on the Chronus substrate that stores counters in sep-
arate sub-arrays from data. Here, we observe that decoupling
counter accesses from the critical path of the data row activa-
tions can enable optimizations to reduce counter activations.
Specifically, we make two observations that frame the design
space for counter access optimizations.
Observation-1: Locality in Counter Row Activations. As
each DRAM row (64K rows per bank) requires a 1 byte acti-
vation counter (assuming a TRH of 256), the counters occupy
64KB of storage, fitting in 64 DRAM rows within a chip1. Con-
sequently, there is significant locality among counter row ac-
tivations, even if data row activations may not have locality.
This motivates the potential for coalescing requests to the same
counter row to reduce counter row activations.
Observation-2: Large Footprint of Counters. Our analysis
shows that across workloads, the number of unique rows that
make up even 50% of the row activations surpasses 7,500 rows
per bank. Thus, SRAM counter caches, within DRAM chips,
may require 7500+ entries, which can be prohibitive.

Based on these observations, we propose CnC-PRAC, a RH
1An x8 DRAM chip has 1KB per row, assuming 8KB row per DRAM bank.

1

(b) Existing solutions incur slowdown
 due to timing increase or extra ACT energy

(c) CnC-PRAC proposes coalescing of counter-row activations
 for a practical mitigation

CnC-PRAC

DRAM

MOAT, QPRAC
(In-Line Counts)

ACT Energy

Sl
ow

do
w

n

High

High

Low
GOAL

Low

Chronus
(Disjoint
Counts)

Minimize Extra
 ACT Energy

No DRAM Timing
Increase

(a) DDR5 specification introduces
Per Row Activation Counting (PRAC)

ACT
Stream

DRAM

Per-Row
ACT Count

Crosses
Threshold

Alert

In-Line Counters
Increase DRAM Timings

ACT Increment ACT

Per Row Activation Counting (PRAC)

Disjoint Counters
Increase DRAM ACTs

Disjoint
Counters

Coalesce Counter-Updates
 to Same Counter Row

ACTs Data
Sub-array

Counter
Sub-array

Figure 1: (a) With the PRAC framework, DRAM can store per-row activation counts that can exactly signal when a mitigation
is required, when a count crosses a threshold, using an Alert. (b) Existing PRAC implementations (QPRAC [12] or MOAT [11])
store counts in-line with DRAM rows, and incur increased DRAM timings to increment activation counts; other implementations
(Chronus [13]) store counts in separate sub-arrays, incurring extra activation counts for counters on each data access. (c) We
propose CnC-PRAC, which decouples counter row activations from data row activations, and coalesces counter row activations
using a request buffer, avoiding slowdown without DRAM timings increase and minimizing energy for counter row activations.

defense that Coalesces, not Caches, PRAC counters to mini-
mize counter activations. CnC-PRAC’s main design compo-
nent is an in-DRAM counter request buffer (see Figure 1(c)),
which buffers counter requests and is designed to enable coa-
lescing of counter requests to the same row. Each buffer entry
tracks the counter sub-array RowID and the byte position of
the requested counter. When a batch of coalescable entries
reaches a threshold (e.g., 4), the request buffer performs a single
counter row activation to read-modify-update four counters
in the same counter row. These four counter updates to the
same row are done in parallel to a data row activation.

CnC-PRAC proposes multiple designs for the request buffer.
First, we propose one request buffer per counter row, CnC-
PRAC-PerRow. This per-row request buffer maximizes coalesc-
ing opportunities by independently tracking requests to each
counter row, achieving up to 82% reduction in counter row
activations compared to Chronus. This design incurs a higher
storage overhead (e.g., 4 entries per row for 64 counter rows
incurs 384 bytes per bank), which may be less desirable in
space-constrained settings. To reduce this cost, we evaluate an
additional design, CnC-PRAC-Unified using a unified request
buffer shared across all rows, coupled with a priority-based
eviction policy that tracks the row with the highest number of
outstanding requests. When four requests accumulate to the
same row within this buffer, the buffer flushes them to mem-
ory. This reduces counter row activations by 75%, providing
most of the benefits of the per-row design while incurring less
storage (e.g., 64 entry unified buffer needs 192 bytes per bank).
To ensure the counter request buffering does not impact

the security against Rowhammer, we ensure that no counter
request is buffered for more than n repeated activations at any
time. We lower the back-off threshold by n (by default, n = 4)
to account for this delay in updating the activation counts in
DRAM and thus avoid any loss in security.

We evaluate CnC-PRAC with 57 workloads, including SPEC
CPU-2017, SPEC CPU-2006, TPCC, Hadoop, and YCSB. Our
results show that with Back-Off threshold (NBO) of 28 and one
mitigation per Alert, CnC-PRAC can securely handle a TRH
of 66 while incurring a negligible slowdown compared to a
non-secure DRAM baseline. CnC-PRAC incurs just 0.84-1%
extra dynamic energy compared to the baseline. This is due to

a reduction in counter row activations in CnC-PRAC.
Overall, this paper makes the following contributions:
1. We observe that existing PRAC implementations are imprac-

tical, either due to high performance or energy overheads
imposed by the activation-counter read-modify-writes in
PRAC, on the critical path of data-access.

2. We propose CnC-PRAC, a decoupled counter management
framework in-DRAM to address these overheads.

3. We propose the first in-DRAM counter coalescing strategies
for PRAC that minimize counter row activations.

4. We achieve a PRAC implementation with negligible perfor-
mance and dynamic energy costs and no security impact.

2. Background and Motivation
2.1. Per Row Activation Counting (PRAC)
JEDEC’s DDR5 specification [10] introduces the Per Row Acti-
vation Counting (PRAC) framework to count row activations
and accurately mitigate Rowhammer attacks. PRAC incorpo-
rates two key components: (1) activation counters embedded
within each DRAM row, which are incremented upon every
activation, and (2) the Alert Back-Off (ABO) protocol, where
the DRAM signals an Alert to the memory controller when
a row’s counter exceeds a predefined threshold (NBO), to re-
quest the memory controller to initiate Rowhammer mitigation
commands, Refresh Managements (RFMs), to the DRAM.
While PRAC provides robust protection against Rowham-

mer, it requires read-modify-write operations on activation
counters during each row activation. This requires an increase
in DRAM timings such as row precharge latency (tRP) and row
cycle time (tRC), resulting in slowdown and energy overheads.
2.2. Drawbacks of Prior PRAC Implementations
Recent approaches such as MOAT [11] and QPRAC [12] focus
on providing a secure PRAC implementation, demonstrating
vulnerabilities with Panopticon [15], the precursor to PRAC.
Both MOAT and QPRAC store activation counters inline with
the DRAM row, as per the PRAC specification [10], and conse-
quently, pay the cost of the increased DRAM timings for the
counter read-modify-write. On average, these approaches in-
cur a performance overhead of up to 10% compared to insecure
DDR5 implementations [13].

2

To address these slowdowns, Chronus [13] stores the ac-
tivation counters in a separate DRAM sub-array. This de-
sign enables sub-array-level parallelism [14], allowing counter
reads and updates to occur parallel to data row activations.
While Chronus effectively reduces performance penalties, it
comes at the cost of energy efficiency as each data row acti-
vation triggers an additional counter row activation; the prior
work reports that it can cause over 10% energy overhead [13].
This paper seeks to optimize the management of counters in
Chronus to reduce the energy of counter row activations.

3. Design of CnC-PRAC
We build on Chronus’s substrate, with a separate sub-array for
counters compared to the data, to enable parallel activations of
counter rows with data row activations. To minimize the extra
counter row activations, we decouple the counter access from
the critical path of the data access to enable optimizations such
as counter row activation coalescing. Next, we first motivate
the potential for coalescing before providing details on our
counter request buffer design and operation.

3.1. Potential for Counter Activation Coalescing

We analyze both the spatial distribution and temporal local-
ity of counter row activations to evaluate the feasibility of
coalescing these accesses.

Figure 2 shows the skew in activations across the 64 counter
rows in a DRAM bank, defined as the ratio of maximum to
mean activations. On average, there is a skew of 1.2, with the
worst-case of 1.5 in Mediabench. A low spatial skew implies
that accesses may be distributed evenly, making coalescing
via row buffer reuse ineffective. That is, counter row accesses
rarely hit the row buffer naturally and typically require an
activation.
To better understand coalescing potential, we also analyze

the temporal repetition of counter row accesses. In Figure 3,
we plot the highest number of requests to the same counter
row within a window of 64 requests, averaged across all such
windows, for a workload. We find that within a window of
64 counter requests, 6 requests are to the same counter row,
on average across all workloads. This suggests that, although
workloads have low spatial skew on average, short-term tem-
poral locality exists, making it feasible to coalesce multiple
accesses to the same row. This motivates our counter request
buffer, which buffers up to n counter requests, to coalesce
multiple requests into a single counter row activation.

The coalescing potential increases as the request buffer size
increases. In CnC-PRAC, we aim to minimize the request
buffer size, to enable coalescing even with a buffer size of 64
(equivalent to the number of counter rows in the sub-array).

3.2. Request Buffer Operations

Overview: The request buffer is an n-entry structure imple-
mented using content-addressable memory (CAM). Each entry
is 3 bytes, comprising a 6-bit counter subarray row identifier
(RowID), a 10-bit byte-position ID (ByteID) to identify a specific
counter, and the remaining 8 bits are used to count repeated

ycs
b_b

ser
ve
r

ycs
b_c
ser
ve
r

ycs
b_e

ser
ve
r

50
5.m

cf

51
0.p
are
st
55
7.x
z

43
6.c
act
usA

DM

45
0.s
op
lex

48
2.s
ph
inx
3
tpc
h2
tpc
h1
7
tpc
c64

gre
p_m

ap
0

wc
_84

43

wc
_m
ap
0

h2
64
_en

cod
e

jp2
_de

cod
e

jp2
_en

cod
e

All (
57

)
0

1.0

1.1

1.2

1.3

1.4

1.5

Sk
ew

YCSB SPEC2K17 SPEC2K6 TPC Hadoop MediaBench

Figure 2: The skew (max/mean) of accesses across the 64 rows
of the counter subarray. We show the top-3 most-skewed work-
loads across the benchmarks, observing an average skew of 1.2
across all workloads and a maximum skew of 1.5.

ycs
b_b

ser
ve

r

ycs
b_c

ser
ve

r

ycs
b_e

ser
ve

r

50
5.m

cf

51
0.p

are
st
55

7.x
z

43
6.c

act
usA

DM

45
0.s

op
lex

48
2.s

ph
inx

3
tpc

h2
tpc

h1
7
tpc

c64

gre
p_m

ap
0

wc_8
44

3

wc_m
ap

0

h2
64

_en
cod

e

jp2
_de

cod
e

jp2
_en

cod
e

All (
57

)
0

2

4

6

8

Av
er

ag
e

Sa
m

e
Co

un
te

r R
ow

 R
eq

ue
st

s

YCSB SPEC2K17 SPEC2K6 TPC Hadoop MediaBench

Figure 3: The highest number of same row counter requests
within any window of 64 counter requests, averaged across
windows. On average, across all workloads, within 64 requests,
we find 6 requests are to the same counter row.

requests (RepCount) for the same counter while the request is
buffered. The RowID serves as the key, enabling counter row
activation coalescing for requests to the same counter row. We
describe the request buffer operation next.
Insertion: On each data row activation, instead of directly
accessing the counter from the sub-array, we insert the counter
request into the buffer, as shown in Figure 4. For new entries,
the RepCount is set to zero. If there is already a request for
the same counter, we increment the corresponding RepCount
instead of allocating a new entry.
Removal: Accesses to the counter sub-array for counter read-
modify-writes of counters are done on request buffer removals,
parallel to a data sub-array activation. In the common case,
we remove requests in batches of M that map to the same
sub-array row, issuing a single counter sub-array activation
for M read-modify-write (RMW) operations. Additionally, a
removal can happen in two cases:

Ctr
RowID

Ctr
ByteID

Rep
Count

Request Buffer Entry (3B)

6-bit 10-bit 8-bit

Counter Request Buffer

Ctr
RowID

Insert on
Data ACT

Remove
Coalesce M
Requests
Buffer Full

RepCount ≥ K
(Security)

Figure 4: Design of CnC-PRAC. Any data row activation inserts
a counter request into the buffer. An entry is removed when
M requests to the same row can be coalesced, if the buffer is
full, or if it requires removal for security.

3

1. Buffer Full: When the request buffer is full, we trigger
eager removal of entries from the RowID with the highest
number of entries, to avoid an overflow.

2. RepCount exceeds a threshold: If any entry’s RepCount
reaches K , we remove it along with other entries for the
same row. This is because we reduce the NBO by K to
account for the delayed counter access; delaying the counter
access beyond K increments would result in loss of timely
Rowhammer mitigation and insecurity.

Sizing: We set the request buffer size to 64 per-bank to en-
sure adequate potential for coalescing counter row activations.
Since M read-modify-writes of 1B counters from the counter
sub-array need to occur in the shadow of an 8B data access
from the data sub-array for each chip, we set M = 4. To mini-
mize impact on NBO and rate of Alerts, we set K = 4 as this is
sufficient for capturing the counter hits in the request buffer.

3.3. Architecting the Request Buffer
The design of the request buffer is critical to ensure we can
coalesce the most counter row activations. We consider a few
different options that balance practicality and the maximum
coalescing potential in CnC-PRAC.
Per-Row Request Buffer. As shown in Figure 5 (a), one approach
is to assign a dedicated buffer to each row in the counter sub-
array, with a size equal to the maximum coalescing limit (M).
We call this approach, CnC-PRAC-PerRow. This design guar-
antees that M requests can be coalesced, and is highly effective
in minimizing activations. However, its storage requirements
are M times the number of counter sub-array rows.

(a) CnC-PRAC-PerRow (b) CnC-PRAC-Unified

Counter
Sub-arrayPer Row Request

Buffer (FIFO)
Unified Request

Buffer (CAM)

Counter
Sub-array

Max-count entry:
count: 4

Remove

Insertion

Update
Remove

Figure 5: Designs for the Counter Request Buffer in CnC-PRAC

Unified Request Buffer. Alternatively, a unified structure with
64 entries for the entire counter sub-array is more storage
efficient and desirable. However, a naive unified request buffer
with a FCFS-like policy, that looks at the first available RowID
in the queue and removes all other entries corresponding to the
counter row is inefficient. This is because there may be other
rowswith a higher number of entries buffered later in the buffer.
Ideally, we seek to remove the entries corresponding to the
counter RowID with the highest number of buffered entries.
A queue sorted based on the counts of entries per RowID
can enable this behavior, but insertions become prohibitively
expensive, requiring up to O(N) relocations.
To approximate a sorted unified request buffer, we design

CnC-PRAC-Unified, as shown in Figure 5 (b). This approach
maintains a CAM while keeping track of just the RowID with
the highest count in the buffer and the associated count as
metadata. On insertions, the entry count of the inserted RowID

is calculated with a single CAM lookup and compared with the
maximum entry count, and the metadata is updated. When the
entries belonging to the highest count RowID are removed, the
maximum count RowID defaults to that of the first entry in the
buffer. While this approach captures only a local maximum,
we show that it substantially reduces counter row activations.

3.4. Timings of Coalesced Counter Increments
CnC-PRAC coalesces up to K = 4 counter requests mapping
to a single counter row, to enable a single counter-row acti-
vation for these requests. These counters can lie in different
columns of a counter-row, requiring multiple column select sig-
nals within the counter row. Fortunately, prior work [16] has
shown that smaller DRAM arrays, such as a 64-row counter-
subarray, can have a considerably reduced tRCD compared
to a data subarray of 512 rows in DDR3 DRAM. Thus, multi-
ple (K) single byte counter increments are feasible within the
shadow of a data row activation; we assume K = 4. A precise
evaluation of these timings for DDR5 is left for future work.

3.5. Protecting Counter Sub-array from Bitflips
To protect the counters themselves from Rowhammer attacks,
prior approaches such as introducing guard rows [17, 18] be-
tween consecutive rows in the sub-array, or refresh poten-
tial victims in parallel to other data row activations [19], can
be adopted in CnC-PRAC similar to Chronus [13]. Since the
counter sub-arrays are small, consisting of just 64 counter rows,
these mitigations incur negligible overhead in terms of storage
or energy.

4. Evaluations
4.1. Methodology

Simulation Framework: We evaluate CnC-PRAC using the
trace-based DRAM simulator Ramulator2 [20, 21]. We use an
out-of-order core model in Ramulator2, similar to prior RH
works [22–28]. Our system configuration is shown in Table 1.
We simulate a system with a 4-core, 8MB shared LLC equipped
with 32GB DDR5 memory (one channel, two ranks).

Table 1: System Configuration

Out-Of-Order Cores 4 Core, 2GHz, 4 wide, 352 entry ROB
Last Level Cache (Shared) 8MB, 8-Way, 64B lines

Memory Size, Type 32 GB, DDR5, x8 chips
Bus Speed 1600MHz (3200MHz DDR)

DRAM Organization 32 Banks x 2 Ranks x 1 Channel
Rows Per Bank, Size, Size/Chip 64K, 8KB, 8Kbits

Evaluated Designs: We compare CnC-PRAC against an inse-
cure DRAM baseline and Chronus [13] (specifically, Chronus-
PB). We additionally compare 4 different request buffer de-
signs: CnC-PRAC-PerRow (with 256 entries, 4 per row), a
unified buffer that removes the first RowID (64 entries), a fully
sorted unified buffer (64 entries), and CnC-PRAC-Unified (64
entries). We use a default Back-Off Threshold (NBO) of 32 (28
for CnC-PRAC) and 1 RFM per Alert (PRAC-1). We also employ
a priority-based mitigation service queue, similar to QPRAC,

4

ycs
b_c

ser
ve

r

51
0.p

are
st

ycs
b_b

ser
ve

r

ycs
b_e

ser
ve

r
tpc

c64

ycs
b_a

ser
ve

r
55

7.x
z

48
2.s

ph
inx

3

jp2
_de

cod
e

50
5.m

cf

wc_8
44

3

wc_m
ap

0

43
6.c

act
usA

DM

47
1.o

mne
tpp

47
3.a

sta
r

jp2
_en

cod
e

tpc
h1

7

48
3.x

ala
ncb

mk

46
2.l

ibq
ua

ntu
m
tpc

h2

43
3.m

ilc

52
0.o

mne
tpp

43
7.l

esl
ie3

d

45
0.s

op
lex

45
9.G

em
sFD

TD

54
9.f

oto
nik

3d

43
4.z

eu
sm

p

51
9.l

bm

47
0.l

bm

42
9.m

cf

SP
EC

2K
6 (

23
)

SP
EC

2K
17

 (1
8)

TP
C (

4)

Had
oo

p (
3)

Med
iaB

en
ch

 (3
)

YC
SB

 (6
)

All (
57

)
0%

20%
40%
60%
80%

100%
No

rm
al

ize
d

Co
un

te
r

Ro
w

Ac
tiv

at
io

ns GMEAN
Unified RB-FCFS CnC-PRAC-Unified Unified RB-Sorted CnC-PRAC-PerRow

Figure 6: Normalized counter row activations for the different request buffer (RB) designs including Unified RB - FCFS (using the
first RowID), CnC-PRAC-Unified, Unified RB - Sorted (with sorted queues), and CnC-PRAC-PerRow, normalized to Chronus.

ycs
b_c

ser
ve

r

51
0.p

are
st

ycs
b_b

ser
ve

r

ycs
b_e

ser
ve

r
tpc

c64

ycs
b_a

ser
ve

r
55

7.x
z

48
2.s

ph
inx

3

jp2
_de

cod
e

50
5.m

cf

wc_8
44

3

wc_m
ap

0

43
6.c

act
usA

DM

47
1.o

mne
tpp

47
3.a

sta
r

jp2
_en

cod
e

tpc
h1

7

48
3.x

ala
ncb

mk

46
2.l

ibq
ua

ntu
m
tpc

h2

43
3.m

ilc

52
0.o

mne
tpp

43
7.l

esl
ie3

d

45
0.s

op
lex

45
9.G

em
sFD

TD

54
9.f

oto
nik

3d

43
4.z

eu
sm

p

51
9.l

bm

47
0.l

bm

42
9.m

cf

SP
EC

2K
6 (

23
)

SP
EC

2K
17

 (1
8)

TP
C (

4)

Had
oo

p (
3)

Med
iaB

en
ch

 (3
)

YC
SB

 (6
)

All (
57

)
0.98
1.0

1.02
1.04
1.06
1.08

No
rm

al
ize

d
 D

yn
am

ic
En

er
gy GMEAN

Chronus CnC-PRAC-Unified CnC-PRAC-PerRow

Figure 7: Dynamic energy overhead of Chronus and CnC-PRAC, normalized to non-secure baseline. Compared to Chronus, which
has close to 2.1% overhead, CnC-PRAC-Unified and CnC-PRAC-PerRow has only a 1% and 0.84% overhead, respectively, due to
fewer counter row activations.

for both Chronus and CnC-PRAC, allowing one proactive mit-
igation every 2×tREFI.
Workloads: We use 57 workloads from SPEC2006 [29],
SPEC2017 [30], TPC [31], Hadoop [32], MediaBench [33], and
YCSB [34] provided by Ramulator2 [35]. We run 4 copies of
the workloads (1 per core) until 400 million instructions.

4.2. Reduction in Counter Row Activations
Figure 6 shows the counter subarray activations for the dif-
ferent request buffer designs normalized to Chronus. The
naive unified request buffer design, Unified RB - FCFS has
almost 62.2% of Chronus’s counter row activations. In com-
parison, CnC-PRAC-Unified with the approximate maximum
entry count per row incurs 27.1% of the counter row activa-
tions as Chronus, nearly identical to an idealized Unified RB -
Sorted, with a fully sorted unified request buffer (24.4%). This
is because CnC-PRAC-Unified’s removals from the buffer ap-
proximate the maximums for the buffered entry counts per row.
Moreover, CnC-PRAC-Unified’s reductions in counter row ac-
tivations are comparable to the CnC-PRAC-PerRow (17.6%),
which always ensures that a single counter row activation is
performed for four counter requests.

4.3. Energy and Performance

Dynamic Energy: CnC-PRAC’s optimization focuses on the
dynamic energy overheads, as it aims to reduce the counter
sub-array activations. We assume each counter subarray ac-
tivation, precharge, and one byte Read-Modify-Write (RMW)

consumes 19% extra energy compared to a data row activation,
as per Chronus [13]. For additional 1-byte RMWs, we estimate
it to take 1/8th of an 8-byte DRAM R/W energy in Ramulator2,
after applying a similar ratio as Chronus. Figure 7 shows the
dynamic energy overhead of Chronus and CnC-PRAC normal-
ized to an insecure baseline. On average, Chronus incurs a
2.1% dynamic energy overhead, while CnC-PRAC-Unified and
CnC-PRAC-PerRow further reduce this to just 1% and 0.84%,
respectively. These benefits predominantly come from a reduc-
tion in counter row activation and precharge operations; we
maintain the number of counter read-modify-writes and their
energy to be the same. The CnC-PRAC counter request buffer
accesses require less than 1.1 pJ, as reported by Eva-CAM and
CACTI [36, 37], which is negligible compared to counter row
activation energy.

Static Energy: CnC-PRAC’s counter sub-array incurs the
same background DRAM energy as Chronus 2. In CnC-PRAC-
Unifed, the request buffer requires a 64-entry CAM, similar
in size as a TRR tracker in DDR4 [38], and smaller than prior
in-DRAM trackers [39, 40]. Using Eva-CAM [36] with a 45nm
process [41], we estimate it to incur 4.3 mW of static power per
DRAM chip. In comparison, the CnC-PRAC-PerRow incurs
a static power of 0.25 mW per DRAM chip, as reported by
CACTI [37], around 20× less than CnC-PRAC-Unified. While

2Chronus [13] assumes that the counter sub-array with 64 rows consumes
19% of the background energy as the data subarray with 128K rows. We leave
a more accurate estimation of the background energy for future work.

5

the per-row design is beneficial in terms of static power, it is
less efficient in storage. The unified design with 64 entries
requires 192 bytes per bank (3 bytes per entry), whereas the
per-row design with 256 entries (4 entries per row) requires 384
bytes per bank with 12 bits per entry (10-bit byte-position, 2-
bit RepCount). We leave the exploration of designs that incur
both low static energy and storage for future work as this
requires more accurate SPICE-modeling of counter sub-arrays
and request buffer designs.

Performance. On average, we observe that both Chronus
and CnC-PRAC have negligible performance overheads (below
0.5%), when combined with proactive mitigations on tREFIs,
as enabled by QPRAC’s priority mitigation service queues.

4.4. Sensitivity to Request Buffer Size

A smaller request buffer provides less reduction in counter row
activation counts. As shown in Figure 8, varying the request
buffer size of CnC-PRAC-Unified from 64 to 16 causes the
counter row activation counts to increase from 27% to 74%
of the activations in Chronus. This corresponds to dynamic
energy overhead increasing from 1% to 1.8% compared to a
non-secure baseline.

All (57)
0%

20%
40%
60%
80%

100%

No
rm

al
ize

d
Co

un
te

r
Ro

w
Ac

tiv
at

io
n

64-entry 48-entry 32-entry 16-entry

Figure 8: Sensitivity of CnC-PRAC-Unified’s counter row ac-
tivations as the request buffer size varies. Reducing to 1/4 of
the original size results in an increase of normalized activation
from 27.1% to 74.7%.

5. Why Not Cache Row Activation Counts?

CnC-PRAC advocates for coalescing counter row requests to
the same row to minimize counter row activations. An orthog-
onal strategy is to introduce an in-DRAM counter cache to
reduce counter accesses from the DRAM arrays. We charac-
terize the row activation patterns across all DRAM rows for
workloads, and identify that for capturing even 50% of the
counter row activations, the counter footprint would cross
almost 600 to 2,000 to 7,500 in small, medium or large memory
footprint workloads, as shown in Figure 9 in the Appendix.
Consequently, for a counter cache to be effective it would

require 1000s of entries per bank. Such large SRAM-based
caches can be prohibitive to incorporate within DRAM, which
can often only accommodate 50-100 entries per bank. We eval-
uate the LRU-based caches with approximately 100 entries
per DRAM Chip and observe that such caches do not provide
significant reuse and do not meaningfully reduce the row ac-
tivation counts. Future works can consider better filtering or
caching techniques for activation counters in DRAM chips.

6. Related Work

Prior PRAC Designs: PRAC was inspired by Panopticon,
which proposed per row activation counters. MOAT [11] and
QPRAC [12] showed vulnerabilities in Panopticon due to tardy
mitigations and FIFO queues and proposed efficient defenses.
Chronus [13] further tackled the performance overheads of
PRAC’s DRAM timings by using a separate counter sub-array
for counter updates. Building on Chronus, we further reduce
energy overheads by coalescing counter row activations.
Hybrid Mitigation: Hydra [42] uses per-row counters in
DRAM with SRAM filtering and caching in the memory con-
troller. Still, its Group Counting Tables (1000 entries per bank)
and cache (8000 entries per channel) incur impractical stor-
age overhead. Our design instead coalesces counter accesses,
achieving energy efficiency without prohibitive storage.
Efficient Aggressor Counting: SRAM-based trackers like
CAT [43], TWiCE [44], and Mithril [45] are storage-intensive
and impractical at sub-100 TRH. Probabilistic trackers, such
as DSAC [46] and PAT [47], are insecure or unreliable, while
PrIDE [48] suffers significant bandwidth loss at low TRH. Un-
like these approaches, our design ensures deterministic secu-
rity with minimal storage and negligible overheads.

7. Conclusion

This paper introduces CnC-PRAC, a novel PRAC implementa-
tion that enables an energy-efficient Rowhammer mitigation.
By reordering and coalescing accesses to counters within the
same row, and decoupling counter operations from the critical
path of data accesses, our design reduces counter-related row
activations by 75%-83%. This enables negligible slowdown and
a minimal 0.84%-1% energy overhead compared to baseline
DDR5 DRAM, surpassing state-of-the-art solutions.

Appendix A: DRAM Row ACTs Distribution

Figure 9 shows the distribution of activations per DRAM row
across the entire memory, with the rows sorted in descending
order of activations. We classify the workloads based on their
memory footprint sizes into small, medium and large. The
dotted yellow lines indicate the 25, 50, 75, and 90 percentile
rows in terms of total activations.
In a small footprint workload like jp2_encode, 7,152 rows

across the memory (111 rows per bank) account for 50% of total
activations. This skew suggests that a small subset of rows
receives disproportionately high access frequency, offering an
opportunity for caching to effectively capture a reasonable
fraction of the counter accesses. However, as the memory
footprint increases, the number of heavily accessed rows also
grows. For example, in amedium footprint workload like tpch2,
186,257 rows across memory (2910 rows per bank) account for
50% of activations. Similarly, in a large footprint workload
like wc_8443, 534,734 rows across memory (8355 rows per
bank) account for 50% of activations. This makes it difficult
for resource-constrained caches to maintain effective hit rates
and provide benefits in larger workloads.

6

194811485871522243
Sorted Unique Row ID

2

4

6

Ac
tiv

at
io

ns

90%

75%

50%

25%

jp2_encode

126675663093283611862
Sorted Unique Row ID

0

50

100

150

200

250

Ac
tiv

at
io

ns 90%

75%

50%

25%

510.parest

136980833034197912510
Sorted Unique Row ID

0

50

100

150

Ac
tiv

at
io

ns 90%

75%

50%

25%

482.sphinx3

(a) Small Footprint

55888437139618625751355
Sorted Unique Row ID

0

50

100

150

200

Ac
tiv

at
io

ns 90%

75%

50%

25%

tpch2

47263528302814916353598
Sorted Unique Row ID

0

25

50

75

100

125

Ac
tiv

at
io

ns 90%

75%

50%

25%

tpch17

58274436409716500653745
Sorted Unique Row ID

0

50

100

150

Ac
tiv

at
io

ns 90%

75%

50%

25%

520.omnetpp

(b) Medium Footprint

13946431001021534734198901
Sorted Unique Row ID

0

20

40

60

80

Ac
tiv

at
io

ns 90%

75%

50%

25%

wc_8443

1339237997986555478222637
Sorted Unique Row ID

10

20

30

40

Ac
tiv

at
io

ns 90%

75%

50%

25%

459.GemsFDTD

14861231103015607817244421
Sorted Unique Row ID

0

50

100

150

200

Ac
tiv

at
io

ns 90%

75%

50%

25%

549.fotonik3d

(c) Large Footprint

Figure 9: Activations to unique DRAM rows across 64 banks, sorted by activation count. We classify workloads into (a) small, (b)
medium, and (c) large memory footprints and illustrate three workloads in each category. The number of rows per DRAM bank
accounting for 50% of total activations increases with footprint size, ranging from 600 per bank in the small footprint workload to
2,000 and 7,500 per bank in the medium and large ones, respectively.

All (57)
0%

20%

40%

60%

80%

100%

No
rm

al
ize

d
Co

un
te

r A
ct

iv
at

io
n No Cache

1-level LRU Cache
TinyLFU Cache

Figure 10: Counter row activations with CnC-PRAC without
and with caching, normalized to Chronus. Across all caching-
based designs, the reduction in counter row activations is only
1.2%, primarily due to the small cache size relative to the large
number of frequently activated rows(see Figure 9).

Appendix-B: Evaluation of Caches
To evaluate the impact of caches, we extend CnC-PRAC and
add an in-DRAM byte-level cache that caches 1B counters
alongwith identifier metadata (tag, and dirty/valid bits). When-
ever a read-modify-write is serviced from the request queue,
we install a clean copy of the counter in the cache. If there are
any writebacks due to dirty evictions on a cache insertion, they
are inserted into the counter request buffer. We re-purpose one
bit of the RepCount to differentiate a write-back from a RMW
request in the request buffer. The goal of the cache is to ensure
that hits for counter accesses can completely eliminate the
counter row activation and read/write access for the counter.

We prototyped two cache designs: (1) a 4-way set-associative
cache with LRU replacement and (2) a 2-level admission-based
cache inspired by TinyLFU [49]. The admission-based cache is
designed to avoid polluting the cache with low-value entries,

particularly effective under long-tailed access patterns. Both
caches are limited to 64 entries due to storage constraints.
The caches, however, bring minimal improvement in reducing
counter row activations as seen in Figure 10. This is mainly
because of the limited size of the cache is unable to capture
many hits, showing a hit rate of less than 3.5%. Future works
can explore better caching techniques within the constraints
of the limited storage available in-DRAM.

References
[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,

“Flipping bits in memory without accessing them: An experimental study of dram
disturbance errors,” ISCA, 2014.

[2] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to gain kernel
privileges,” Black Hat, vol. 15, p. 71, 2015.

[3] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu, C. Giuffrida, H. Bos,
and K. Razavi, “TRRespass: Exploiting the many sides of target row refresh,” in IEEE
Symposium on Security and Privacy, 2020.

[4] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl,
and Y. Yarom, “Another flip in the wall of rowhammer defenses,” in IEEE Symposium
on Security and Privacy, 2018.

[5] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T. Austin, “Anvil:
Software-based protection against next-generation rowhammer attacks,” in ASPLOS,
2016.

[6] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting codes: On the
effectiveness of ecc memory against rowhammer attacks,” in IEEE Symposium on
Security and Privacy (SP), 2019.

[7] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote software-induced
fault attack in javascript,” in Detection of Intrusions and Malware, and Vulnerability
Assessment, 2016.

[8] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos,
K. Razavi, and C. Giuffrida, “Drammer: Deterministic rowhammer attacks on mobile
platforms,” in ACM-CCS, 2016.

[9] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu,
“Revisiting rowhammer: An experimental analysis of modern dram devices and
mitigation techniques,” in ISCA, 2020.

[10] JEDEC. JESD79-5C. https://www.jedec.org/document_search?search_api_views_
fulltext=jesd79-5c.

[11] M. Qureshi and S. Qazi, “MOAT: Securely Mitigating Rowhammer with Per-Row
Activation Counters,” in Proceedings of the 30th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2025.

7

https://www.jedec.org/document_search?search_api_views_fulltext=jesd79-5c
https://www.jedec.org/document_search?search_api_views_fulltext=jesd79-5c

[12] J. Woo, S. C. Lin, P. J. Nair, A. Jaleel, and G. Saileshwar, “QPRAC: Towards secure
and practical prac-based rowhammer mitigation using priority queues,” in 2025 IEEE
International Symposium on High Performance Computer Architecture (HPCA). IEEE,
2025, pp. 1021–1037.

[13] O. Canpolat, A. G. Yağlıkçı, G. F. Oliveira, A. Olgun, N. Bostancı, I. E. Yuksel, H. Luo,
O. Ergin, and O. Mutlu, “Chronus: Understanding and securing the cutting-edge
industry solutions to dram read disturbance,” in 2025 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2025, pp. 887–905.

[14] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting subarray-level
parallelism (salp) in dram,” in 2012 39th Annual International Symposium on Computer
Architecture (ISCA), 2012, pp. 368–379.

[15] T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A complete in-dram
rowhammer mitigation,” in Workshop on DRAM Security (DRAMSec), 2021.

[16] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu, “Tiered-latency
dram: A low latency and low cost dram architecture,” in 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), 2013, pp. 615–626.

[17] V. Van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C. Kruegel,
H. Bos, and K. Razavi, “Guardion: Practical mitigation of dma-based rowhammer
attacks on arm,” in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2018, pp. 92–113.

[18] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida, and K. Razavi,
“ZebRAM: comprehensive and compatible software protection against rowhammer
attacks,” in 13th USENIX - (OSDI 18), 2018, pp. 697–710.

[19] M. Marazzi, F. Solt, P. Jattke, K. Takashi, and K. Razavi, “REGA: Scalable Rowhammer
Mitigation with Refresh-Generating Activations,” in IEEE Symposium on Security
and Privacy (SP). IEEE, 2023.

[20] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram simulator,”
IEEE Computer architecture letters, vol. 15, no. 1, pp. 45–49, 2015.

[21] H. Luo, Y. C. Tuğrul, F. N. Bostancı, A. Olgun, A. G. Yağlıkçı, and O.Mutlu, “Ramulator
2.0: A modern, modular, and extensible dram simulator,” IEEE Computer Architecture
Letters, vol. 23, no. 1, pp. 112–116, 2024.

[22] A. G. Yağlikçi et al., “Blockhammer: Preventing rowhammer at low cost by blacklist-
ing rapidly-accessed dram rows,” in HPCA, 2021.

[23] F. N. Bostanci, I. E. Yüksel, A. Olgun, K. Kanellopoulos, Y. C. Tuğrul, A. G. Yağliçi,
M. Sadrosadati, and O. Mutlu, “Comet: Count-min-sketch-based row tracking to
mitigate rowhammer at low cost,” in 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2024, pp. 593–612.

[24] A. Olgun, Y. C. Tugrul, N. Bostanci, I. E. Yuksel, H. Luo, S. Rhyner, A. G.
Yaglikci, G. F. Oliveira, and O. Mutlu, “ABACuS: All-Bank activation counters
for scalable and low overhead RowHammer mitigation,” in 33rd USENIX Security
Symposium (USENIX Security 24). Philadelphia, PA: USENIX Association, Aug.
2024, pp. 1579–1596. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/olgun

[25] A. G. Yağlikçi, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and O. Mutlu,
“Hira: Hidden row activation for reducing refresh latency of off-the-shelf dram chips,”
in MICRO, 2022.

[26] H. Luo, A. Olgun, A. G. Yağlıkçı, Y. C. Tuğrul, S. Rhyner, M. B. Cavlak, J. Lindegger,
M. Sadrosadati, and O. Mutlu, “Rowpress: Amplifying read disturbance in modern
dram chips,” in ISCA-50, 2023.

[27] O. Canpolat, A. G. Yağlıkçı, G. F. Oliveira, A. Olgun, O. Ergin, and O. Mutlu, “Un-
derstanding the security benefits and overheads of emerging industry solutions to
dram read disturbance,” in Workshop on DRAM Security (DRAMSec), 2024.

[28] J. Woo and P. J. Nair, “Dapper: A performance-attack-resilient tracker for rowham-
mer defense,” in 2025 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2025.

[29] S. P. E. Corporation, “Spec cpu2006 benchmark suite,” 2006. [Online]. Available:
http://www.spec.org/cpu2006/

[30] “SPEC CPU2017 Benchmark Suite,” Standard Performance Evaluation Corporation.

[Online]. Available: http://www.spec.org/cpu2017/
[31] Transaction Processing Performance Council, “TPC Benchmarks.” [Online].

Available: http://tpc.org/
[32] A. Foundation, “Apache hadoop.” [Online]. Available: http://hadoop.apache.org/
[33] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “Mediabench ii video: Expediting

the next generation of video systems research,” Microprocessors and Microsystems,
vol. 33, no. 4, pp. 301–318, 2009.

[34] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on Cloud
computing, 2010, pp. 143–154.

[35] SAFARI Research Group, “ABACuS — GitHub Repository,” 2023. [Online]. Available:
https://github.com/CMU-SAFARI/ABACuS

[36] L. Liu, M. M. Sharifi, R. Rajaei, A. Kazemi, K. Ni, X. Yin, M. Niemier, and X. S. Hu,
“Eva-cam: A circuit/architecture-level evaluation tool for general content addressable
memories,” in 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2022, pp. 1173–1176.

[37] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas,
“Cacti 7: New tools for interconnect exploration in innovative off-chip memories,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 14, no. 2, pp.
1–25, 2017.

[38] H. Hassan, Y. C. Tugrul, J. S. Kim, V. Van der Veen, K. Razavi, and O. Mutlu, “Uncov-
ering in-dram rowhammer protection mechanisms: A new methodology, custom
rowhammer patterns, and implications,” in MICRO-54, 2021, pp. 1198–1213.

[39] M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “Protrr: Principled yet optimal in-dram
target row refresh,” in IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 735–753.

[40] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene: Strong yet
lightweight row hammer protection,” in MICRO. IEEE, 2020, pp. 1–13.

[41] X. Yin, K. Ni, D. Reis, S. Datta, M. Niemier, and X. S. Hu, “An ultra-dense 2fefet
tcam design based on a multi-domain fefet model,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 66, no. 9, pp. 1577–1581, 2019.

[42] M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: enabling low-overhead
mitigation of row-hammer at ultra-low thresholds via hybrid tracking,” in ISCA,
2022.

[43] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating wordline crosstalk using
adaptive trees of counters,” in ISCA, 2018.

[44] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe: preventing row-hammering
by exploiting time window counters,” in ISCA, 2019.

[45] M. J. Kim, J. Park, Y. Park, W. Doh, N. Kim, T. J. Ham, J. W. Lee, and J. H. Ahn, “Mithril:
Cooperative row hammer protection on commodity dram leveraging managed
refresh,” in HPCA, 2022.

[46] S. Hong, D. Kim, J. Lee, R. Oh, C. Yoo, S. Hwang, and J. Lee, “Dsac: Low-cost
rowhammer mitigation using in-dram stochastic and approximate counting algo-
rithm,” arXiv:2302.03591, 2023.

[47] W. Kim, C. Jung, S. Yoo, D. Hong, J. Hwang, J. Yoon, O. Jung, J. Choi, S. Hyun,
M. Kang, S. Lee, D. Kim, S. Ku, D. Choi, N. Joo, S. Yoon, J. Noh, B. Go, C. Kim,
S. Hwang, M. Hwang, S.-M. Yi, H. Kim, S. Heo, Y. Jang, K. Jang, S. Chu, Y. Oh, K. Kim,
J. Kim, S. Kim, J. Hwang, S. Park, J. Lee, I. Jeong, J. Cho, and J. Kim, “A 1.1v 16gb
ddr5 dram with probabilistic-aggressor tracking, refresh-management functionality,
per-row hammer tracking, a multi-step precharge, and core-bias modulation for
security and reliability enhancement,” in ISSCC, 2023.

[48] A. Jaleel, G. Saileshwar, S. Keckler, andM. Qureshi, “Pride: Achieving secure rowham-
mer mitigation with low-cost in-dram trackers,” in Annual International Symposium
on Computer Architecture, 2024.

[49] G. Einziger, R. Friedman, and B. Manes, “Tinylfu: A highly efficient cache admission
policy,” ACM Transactions on Storage (ToS), vol. 13, no. 4, pp. 1–31, 2017.

8

https://www.usenix.org/conference/usenixsecurity24/presentation/olgun
https://www.usenix.org/conference/usenixsecurity24/presentation/olgun
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2017/
http://tpc.org/
http://hadoop.apache.org/
https://github.com/CMU-SAFARI/ABACuS

	Introduction
	Background and Motivation
	Per Row Activation Counting (PRAC)
	Drawbacks of Prior PRAC Implementations

	Design of CnC-PRAC
	Potential for Counter Activation Coalescing
	Request Buffer blackOperations
	Architecting the Request Buffer
	Timings of Coalesced Counter Increments
	Protecting Counter Sub-array from Bitflips

	Evaluations
	Methodology
	Reduction in Counter Row Activations
	Energy and Performance
	Sensitivity to Request Buffer Size

	Why Not Cache Row Activation Counts?
	Related Work
	Conclusion

