
Counterpoint: One-Hot Counting for PRAC-Based RowHammer Mitigation

Shih-Lien Lu1, Jeonghyun Woo2, and Prashant J. Nair2

1School of EECS, Washington State University
2Dept. of ECE, The University of British Columbia

Dynamic Random-Access Memory (DRAM) continues to scale
to smaller nodes to increase memory capacity. However, at sub-
20nm scales, repeated activations of adjacent rows can cause
unintended charge leakage in neighboring cells, resulting in the
well-known security vulnerability known as RowHammer. To
mitigate this, the JEDEC DDR5 standard introduces Per-Row
Activation Counting (PRAC), which enables precise tracking of
row activations by adding a dedicated counter to each DRAM
row. PRAC allows DRAM to request mitigation from the memory
controller when any counter exceeds a critical threshold.

While effective, the current PRAC implementation incurs sig-
nificant performance overhead. Each row activation requires a
Read-Modify-Write (RMW) operation to update the correspond-
ing counter, leading to substantial timing delays and slowdowns
of up to 18%. Previous work has attempted to alleviate this by
decoupling counter updates and leveraging subarray-level paral-
lelism to hide the overhead. However, these designs suffer from
high area costs due to the added latches, wires, and control logic.
To address this, we propose a high-performance PRAC implemen-
tation based on One-Hot Encoding, which eliminates RMW oper-
ations, ensures precise activation counting, and reduces hardware
complexity, thereby significantly lowering both performance and
implementation overheads compared to existing solutions.

1. Introduction

As DRAM technology continues to scale down, it faces in-
creasing challenges related to security and reliability. Reduced
cell sizes exacerbate charge leakage and electrical interference,
making modern DRAM more susceptible to data integrity is-
sues [1]. One of the most notable vulnerabilities is RowHam-
mer, a read-disturbance phenomenon in which repeatedly acti-
vating a DRAM row can induce bit flips in physically adjacent
rows, even without directly accessing them [2, 3].
The Per Row Activation Counting (PRAC) mechanism in

the JESD79-5C DDR5 SDRAM standard enhances RowHam-
mer defense by tracking row activations at wordline granu-
larity [4]. When activation thresholds are exceeded, PRAC
enables DRAM to alert the system, pause memory traffic, and
initiate mitigation measures [5, 6]. This improves tracking ac-
curacy and coordination between DRAM and the system. Ad-
ditionally, PRAC employs a back-off protocol via the ALERTn
signal to delay new commands and prevent bit flips.
Implementing PRAC introduces timing changes primarily

related to row activation tracking and refresh mechanisms.
PRAC requires additional logic within the DRAM to monitor
row activations, which can impose timing overhead on each
access. When a row’s activation count exceeds a threshold,
PRAC pauses command issuance from the memory controller,

triggering a back-off protocol via the ALERTn signal. This
delays incoming commands to enable refreshing vulnerable
rows. While effective inmitigating RowHammer, this approach
incurs significant performance and energy overhead [7, 8].
Ideally, one would achieve the security benefits of PRAC

without incurring its performance overhead. Several strategies
have been explored to accomplish this. One such approach
is multi-level counting, where frequently accessed rows are
tracked with fine granularity, while less active rows are moni-
tored with coarser, aggregated counters. Although not yet ap-
plied to PRAC, the hybrid design in Hydra [7] uses this method
within memory controllers. A second approach reduces the fre-
quency of activation counter updates by exploiting locality in
the memory access pattern. For example, Perfect RowHammer
Tracking (PRHT) [9] proposes using a small storage in themem-
ory controller to accumulate activations to recently activated
rows. This approach updates the corresponding activation
counters only when they are evicted from memory. A third
approach, Chronus [10], seeks to eliminate counter updates
from the critical path by decoupling counter updates to mini-
mize latency. Unfortunately, these techniques either encounter
pathological scenarios [11], lack precision, or require signifi-
cant changes to the DRAM interface or micro-architecture.
We observe that a more direct approach to PRAC-based

RowHammer mitigation in DRAM is to avoid imposing an ex-
plicit read-modify-write operation while updating the per-row
counts. To this end, we propose a novel one-hot encoding
scheme for per-row PRAC counters, paired with an innovative
DRAM sub-array architecture that requires minimal modifica-
tions. This new design allows counter updates to occur directly
within the local sense amplifier of the sub-array.

2. Background

2.1. DRAM Read Cycle Timing

The DRAM local sense amplifier plays a crucial role in reading
and amplifying the small voltage differences that result from
charge sharing between the memory cell and the bitline. A
short overview of the phases involved in the DRAM read cycle,
pictorially in Figure 2, is as follows:
1. Precharge Phase: Before data access, the bit-line and

its complementary bit-line (bit-line#) are pre-charged and
equalized to a reference voltage, typically half of the core
array supply voltage (Vcca

2 ), ensuring a stable starting point.
2. Activation Phase: When a row is accessed, the word-line

is activated (driven high to the word-line voltage), allowing
charge from the storage capacitor to affect the bit-line.

3. Sensing and Amplification: The sense amplifier detects
the slight voltage difference between the bit-line and bit-

1



HIGH (12) MEDIUM (18) LOW (27) All (57)
0.7

0.8

0.9

1.0

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

PRAC-64
PRAC-256
PRAC-1024

PRAC-Ideal-64
PRAC-Ideal-256
PRAC-Ideal-1024

Figure 1: Normalized performance of the current PRAC design
and an ideal variant (PRAC-Ideal) that avoids Read-Modify-
Write (RMW) operations, evaluated atNRH values of 64, 256, and
1024 (see Section 5 for details). PRAC incurs up to 16.7% slow-
down due to RMW-induced timing overhead, while PRAC-Ideal
shows only 2.7% overhead at NRH of 64 and almost no overhead
at higher thresholds. These results demonstrate that RMW
operations are the primary source of performance slowdowns.
This paper aims to eliminate this bottleneck by proposing a
high-performance PRAC design with an alternative counting
mechanism that avoids RMWs.

line#, amplifying them to either the core supply voltage
(Vcca) or ground (Vssa) levels, corresponding to ‘1’ and ‘0’.

4. Data Readout: The amplified signal is then sent to the
output circuitry for further processing and delivery to the
requesting unit.

5. Restoration: Since DRAM uses capacitive storage and per-
forms destructive reads, the sensed data is rewritten back
to the memory cell to maintain data integrity.

6. Precharge Reset: After the operation, the bit-lines are
reset to prepare for the next memory access cycle.

Figure 2: DRAM Access Signals and Timings.

2.2. Restrictions and Overheads of PRAC

TheDRAM local sense amplifier detects and amplifies the slight
voltage differences resulting from charge sharing between the
cell’s capacitor and the bit-line capacitance. This charge shar-
ing disrupts the original content of the memory cell, requiring
restoration of the charge in each activated cell. As a result,
these cells cannot share a sense amplifier, and the sense ampli-
fier layout must align precisely with the bit-line pitch, limiting
potential modifications to the area.
In the case of current PRAC designs, the counter bits are

stored within the subarray and typically need to be read out
to global logic for incrementing, which introduces additional
latency. After incrementing, the PRAC counter values must
be updated within the subarray, which causes additional write
delays and increases activation latency. This Read-Modify-
Write operation is the primary source of PRAC’s performance

overhead. Moreover, integrating the global incrementing logic
directly into individual subarrays is challenging due to strict
area and bitline placement constraints. Any design changes
must take these limitations into account.
This paper develops a new counting algorithm and design

that can be integrated with the DRAM subarray sense amplifier
while respecting these placement restrictions. The additional
circuitry required for incrementing the count bits introduces
minimal overhead and can be accommodated within the sense
amplifier area. This approach eliminates the need to read, incre-
ment the count externally, and then write it back, simplifying
the process and reducing latency.

3. Count Without Explicit Read-Modify-Writes
3.1. Leveraging the Simplicity of One-Hot Encoding
Binary One-Hot Encoding is a method for representing infor-
mation using a bit vector in which only one bit is set to ‘1’,
while all others are ‘0’. In a one-hot encoded counter, count-
ing up corresponds to a right shift, and counting down cor-
responds to a left shift. For example, Figure 3 shows a 4-bit
one-hot counter initialized to all ‘0’s. On each cycle (or access),
a constant ‘1’ is shifted from the leftmost position through the
counter bits. The counter saturates when all bits are set to
‘1’. A 4-bit counter can count up to 5, and in general, an N-bit
one-hot counter can count up to N+1. These counter bits are
reset to ‘0’ during each auto-refresh. In the context of PRAC,
if this counting method is applied within the sense amplifiers
for counter bits, the counter is “incremented” (shifted) each
time a row is activated. The updated counter is then written
back during the restoration phase. The changes required to
implement this in the system will be discussed in Section 4.1.

Figure 3: 4-bit One-Hot Binary Counter

3.2. Extending Counts with One-Hot Encoding
Basic binary one-hot encoding with an N-bit counter can count
up to N+1. To count to 500, 499 counting bits are needed
per row. In a typical DRAM array with 8K columns per row,
this results in approximately 6% overhead. To reduce this, we
modify the one-hot counter to extend the count range to 2N
using an N-bit counter. From a sense amplifier perspective, this
modification requires adding only one extra transistor per bit-
line near the sense amplifier. The enhanced encoding supports
both left and right shifts. Figure 4 shows this approach with a
4-bit counter that counts up to 8.

4. The Proposed Design
Our design leverages the fact that the primary function of
one-hot counting is shifting. This operation is achieved using
pass transistors in conjunction with sense amplifiers. More

2



Figure 4: Modified 4-bit One-Hot Binary Counter

importantly, we eliminate the need to integrate a conventional
‘increment’ block within the sense amplifiers, enabling a prac-
tical implementation. The shifting process redirects data from
the sense amplifier to adjacent bit-lines by controlling pass
transistors, which act as multiplexers. Instead of writing the
amplified value back to the cell on the existing bit line, the
pass transistors transfer the current count bit to the cell on the
adjacent bit line.

4.1. Circuit Design for One-Hot Counting

To implement counting using basic one-hot encoding, we pro-
pose adding two pass transistors per bit-line. Figure 5 shows
the abstract circuit diagram with four bit-lines and their cor-
responding complementary bit-line-bars. In this diagram, the
blue circle with a cross represents a pass transistor. These
pass-transistor pairs are controlled by complementary “Con-
trol” signals at the bottom. The control signals either restore
the current bit-line (for refresh) or shift the data to the adjacent
bit-line. For example, with the control signals configured as
shown, a ‘1’ is shifted into the counter from the bottom edge,
and the remaining counter bits shift to the next position.

Figure 5: Circuit to Perform Basic One-Hot Counting.

4.2. Timing for the Proposed Counting Mechanism

The proposed design efficiently moves data across neighboring
bit-lines without requiring additional complex circuitry. This
makes it particularly beneficial for tightly packed memory ar-
chitectures. Furthermore, shifting (counting) occurs naturally
during the restoration phase, with new control signals acti-
vated as shown in Figure 6 during phase 5. Since all cells in
the activated row are equalized first, only a small delta voltage
is generated during phase 3. Modern sense amplifiers also
employ isolation techniques to decouple the bit-line from the

sensing process, so overwriting the existing value does not
present a significant challenge for the sense amplifier.

Figure 6: New DRAM Access Signals and Timings.

4.3. Circuit Design for Extended One-Hot Counting

As discussed in section 3.2, we propose a modification to re-
duce the overhead of adding counting bits to the DRAM array,
allowing counting to 2N with an N-bit counter. This requires
adding a pass-transistor per bit-line to enable shifting in the
opposite direction. Figure 7 illustrates a 4-bit counter example,
where control signals are set to shift a ‘0’ from the top into the
counter bits. The other bits shift down (left in our example),
with each bit moving to position i − 1.

Figure 7: Modified Circuit to Allow Shifting in Both Directions.

5. Evaluation Methodology
Simulation Framework: We evaluate the performance over-
head of the proposed One-Hot Counting mechanism and other
PRAC designs using the cycle-accurate, trace-based DRAM sim-
ulator Ramulator2 [12,13]. The simulation employs an internal
Out-of-Order core model, consistent with prior RowHammer
research [5, 10, 11, 14–18]. The system configuration is shown
in Table 1. We simulate a 4-core processor with an 8MB shared
Last-Level Cache (LLC) and 128GB of DRAM. The memory con-
troller usesMinimalist Open-Page (MOP) address mapping [19]
and a First Ready First Come First Served (FR-FCFS) sched-
uler [20], with a cap of 4 [21], as used in prior work [5, 10, 11].
The memory system consists of a single-channel, quad-rank
32Gb DDR5-8000B chip, with timing parameters from the lat-
est JEDEC DDR5 specification (JESD79-5C, April 2024) [4],
including all PRAC-specific timing modifications.
Evaluated Designs: We evaluate the performance of One-Hot
Counting alongside three PRAC variants against a baseline

3



42
9.m

cf

43
3.m

ilc

43
4.z

eu
sm

p

43
7.l

esl
ie3

d

45
0.s

op
lex

45
9.G

em
sFD

TD

47
0.l

bm

47
1.o

mne
tpp

48
3.x

ala
ncb

mk

51
9.l

bm

52
0.o

mne
tpp

54
9.f

oto
nik

3d

43
6.c

act
usA

DM

46
2.l

ibq
ua

ntu
m

47
3.a

sta
r

48
2.s

ph
inx

3

50
5.m

cf

50
7.c

act
uB

SS
N

51
0.p

are
st
55

7.x
z

gre
p_m

ap
0

jp2
_de

cod
e

jp2
_en

cod
e
tpc

c64
tpc

h1
7
tpc

h2

wc_8
44

3

wc_m
ap

0

ycs
b_a

ser
ve

r

ycs
b_e

ser
ve

r

SP
EC

2K
6 (

23
)

SP
EC

2K
17

 (1
8)

TP
C (

4)

Had
oo

p (
3)

Med
iaB

en
ch

 (3
)

YC
SB

 (6
)

All (
57

)
0.7

0.8

0.9

1.0
No

rm
al

ize
d 

Pe
rfo

rm
an

ce
GMEAN

Workloads with ≥ 2 Row Buffer Misses per Kilo Instructions All Workloads

PRAC-Insecure PRAC One-Hot-Counting PRAC-Ideal

Figure 8: Normalized performance of One-Hot Counting and three PRAC designs compared to a baseline DDR5 system without
PRAC at a RowHammer Threshold (NRH) of 64. PRAC-Insecure and PRAC incur significant average slowdowns of 7.4% and
8%, respectively, primarily due to the timing overhead of Read-Modify-Write (RMW) operations required to update activation
counters. In contrast, One-Hot Counting incurs only a 1.1% slowdown, closely matching PRAC-Ideal’s 0.9% slowdown, despite a
conservative 20% increase in tRAS, by effectively eliminating RMW overhead through shift-based counting.

Table 1: System Configuration

Out-of-Order Cores 4 Cores, 4GHz, 4-wide issue/retire, 352-entry ROB

Last Level Cache (Shared) 8MB, 8-way, 64B lines

Address Mapping Minimalist Open-Page (MOP) [19]
Scheduling Policy FR-FCFS [20, 22] with a cap of 4 [21]

Memory Type DDR5-8000, 32Gb chip, x8 device
DRAM Organization 4 Bank x 8 Groups x 4 Ranks x 1 Channel
Rows Per Bank, Size 128K, 8KB

DDR5 system without PRAC. To do this, we extend Ramula-
tor2 to model PRAC components, including per-row activation
counters and the Alert Back-Off (ABO) protocol. The evalu-
ated designs are: 1) PRAC-Insecure: A PRAC design that
excludes the ABO protocol, isolating and quantifying the per-
formance overhead due solely to Read-Modify-Write (RMW)
operations for updating activation counters on each row ac-
tivation. 2) PRAC: A secure PRAC design with both per-row
activation counters and the ABO protocol. We use QPRAC [5]
as our secure PRAC design, as it is a proven solution for secure
PRAC [5, 6]. 3) One-Hot Counting: Our proposed method
eliminates RMW operations by using a shifting-based counting
scheme during the restoration phase. This avoids additional
RMW overhead but slightly extends the restoration time (tRAS)
to accommodate the shift operations. 4) PRAC-Ideal: A secure
PRAC design with no RMW timing overhead during activa-
tions, representing idealized PRAC performance.

Workloads and Configurations: Our evaluation uses
57 diverse applications from benchmark suites including
SPEC2006 [23], SPEC2017 [24], TPC [25], Hadoop [26], Me-
diaBench [27], and YCSB [28], available in the Ramulator2
repository [29]. We categorize workloads into three memory-
intensity groups based on row buffer misses per kilo instruc-
tions (RBMPKI), as shown in Table 2. For each simulation, we
run four homogeneous workloads, with each core executing
500 million instructions, totaling 2 billion instructions.

We conservatively assume that the shifting operation in One-
Hot Counting increases the restoration time (tRAS) from 32

Table 2: Workload Categorization Based on RBMPKI

RBMPKI Workloads

High
[10+)

429.mcf, 433.milc, 434.zeusmp, 437.leslie3d, 450.soplex,
459.GemsFDTD, 470.lbm, 471.omnetpp, 483.xalancbmk,

519.lbm, 520.omnetpp, 549.fotonik3d

Medium
[1, 10)

436.cactusADM, 462.libquantum, 473.astar, 482.sphinx3,
505.mcf, 507.cactuBSSN, 510.parest, 557.xz, grep_map0,

jp2_decode, jp2_encode, tpcc64, tpch17, tpch2
wc_8443, wc_map0, ycsb_aserver, ycsb_eserver

Low
[0, 1)

401.bzip2, 403.gcc, 435.gromacs, 444.namd, 445.gobmk,
447.dealII, 456.hmmer, 458.sjeng, 464.h264ref,

481.wrf, 500.perlbench, 502.gcc, 508.namd, 531.deepsjeng,
511.povray, 523.xalancbmk, 525.x264, 526.blender,
538.imagick, 541.leela, 544.nab, h264_encode, tpch6,

ycsb_abgsave, ycsb_bserver, ycsb_cserver, ycsb_dserver

ns to 38 ns, representing a roughly 20% increase. To assess the
performance impact, we conduct a sensitivity analysis, varying
tRAS from 32 ns to 42 ns 1. By default, we set the RowHammer
threshold (NRH) to 64 for all evaluated designs. For secure
PRAC designs (PRAC, One-Hot Counting, and PRAC-Ideal),
we configure one RFM per Alert, termed PRAC-1. We further
explore sensitivity by varying NRH between 64 and 4096, using
Back-Off Thresholds (NBO) derived from the QPRAC security
analysis [5]. The evaluated (NRH, NBO) pairs are: (64, 23), (128,
80), (256, 222), (512, 481), (1024, 995), (2048, 2022), and (4096,
4072). We use weighted speedup as our performance metric to
quantify the overhead introduced by each design.

6. Results and Analysis

6.1. Performance Overhead

Figure 8 shows the normalized performance of One-Hot-
Counting and three PRAC designs compared to a baseline
DDR5 system without PRAC at a RowHammer Threshold
(NRH) of 64. PRAC-Insecure and PRAC incur significant aver-
age slowdowns of 7.4% and 8%, while One-Hot-Counting and
PRAC-Ideal show only a 1.1% and 0.9% performance loss.

1A detailed circuit-level analysis of this modification is left for future work.

4



The substantial overhead of PRAC-Insecure and PRAC pri-
marily stems from the required Read-Modify-Write (RMW)
operation on every activation to update per-row activation
counters. This operation delays memory requests during row
buffer conflicts, resulting in significant performance degrada-
tion, especially for memory-intensive workloads. For example,
PRAC-Insecure causes over 10% slowdown in many memory-
intensive workloads, such as 433.milc, 459.GemsFDTD, and
482.sphinx3, and reaches up to 18.3% in 483.xalancbmk, as
shown in Figure 8. PRAC introduces even higher overhead in
several workloads due to additional mitigation overhead from
Alert Back-Off (ABO), which stalls all DRAM banks for 350ns.
For instance, in 471.omnetpp, PRAC incurs a 20.1% slowdown,
compared to 13.4% for PRAC-Insecure.
In contrast, our proposed One-Hot Counting avoids RMW

operations and achieves near-ideal performance, incurring
only a 1.1% average slowdown compared to 0.9% for PRAC-
Ideal, even with a conservative 20% increase in tRAS to accom-
modate shift operations for counting. Even in the worst case,
it causes only a 3% additional slowdown (549.fotonik3d) due
to the increased tRAS. Overall, One-Hot-Counting effectively
bridges the gap between PRAC and PRAC-Ideal while main-
taining accurate activation counting.

6.2. Performance Sensitivity to Increased tRAS
Figure 9 shows the performance impact of One-Hot Counting
as tRAS increases from the baseline 32ns to 42ns. As expected,
performance degradation grows with longer tRAS, with aver-
age slowdown rising from 0.9% at 32ns to 1.2% at 42ns. The
effect is more pronounced for memory-intensive workloads,
where slowdown increases from 2.3% to 3.9%. Despite this,
the overall overhead remains modest, even under conserva-
tive timing assumptions, demonstrating the practicality and
efficiency of One-Hot Counting.

HIGH (12) MEDIUM (18) LOW (27) All (57)
0.90
0.92
0.94
0.96
0.98
1.00

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

tRAS=32
tRAS=34

tRAS=36
tRAS=38

tRAS=40
tRAS=42

Figure 9: Normalized performance of One-Hot Counting as
tRAS varies from 32ns to 42ns. Performance slightly degrades
with increasing tRAS, with the average slowdown increasing
from 0.9% at 32ns to 1.2% at 42ns.

6.3. Performance Sensitivity to RH Thresholds
Figure 10 presents the performance of One-Hot-Counting
and three PRAC variants across NRH from 64 to 4096. PRAC-
Insecure and PRAC incur a significant average slowdown of
7.4% even at NRH of 4096 due to Read-Modify-Write (RMW)
operations for activation counter updates. In contrast, One-
Hot-Counting incurs a 1.1% slowdown at NRH of 64 and less
than 0.5% at higher thresholds, even with a conservative 20%
increase in tRAS to account for the cost of shift operations for
counting. This closely matches the slowdowns of PRAC-Ideal,

64 128 256 512 1024 2048 4096
RowHammer Threshold (NRH)

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d 
Pe

rfo
rm

an
ce PRAC-Insecure PRAC One-Hot-Counting PRAC-Ideal

Figure 10: Normalized performance of One-Hot-Counting and
three PRAC designs as NRH varies from 64 to 4096. PRAC-
Insecure and PRAC incur a significant average slowdown of
7.4% even at RowHammer Threshold (NRH) of 4096 due to Read-
Modify-Write operations for activation counter updates. In
contrast, PRAC-Ideal incurs just a 0.9% slowdown at NRH of
64 and almost no overhead at higher thresholds. One-Hot-
Counting closely matches this performance, incurring only
a 1.1% slowdown at NRH of 64 and less than 0.5% at higher
thresholds, even with a conservative 20% increase in tRAS to
support shift operations.

which incurs a 0.9% slowdown at NRH of 64 and almost no over-
head at higher thresholds. This shows that One-Hot-Counting
effectively eliminates the timing overhead of RMW operations
while maintaining secure and accurate activation tracking.

7. Discussion and Future Work

The one–hot–encoded PRAC architecture demonstrates that
row-activation counters can be integrated directly into the
sense-amplifier region with minimal hardware, using two
or three pass transistors per bit-line, thereby eliminating
high–latency read–modify–write operations. Going into the
future, our next steps will focus on (i) transistor-level layout,
(ii) timing characterization, and (iii) adaptive control logic. We
will co-optimize the placement of pass transistors within the
bit-line pitch, evaluate parasitic loading on the sense amplifiers,
and tune the restore-phase timing to ensure reliable shifts un-
der typical process-voltage-temperature (PVT) corners. We are
already working with a DRAM vendor to develop an industry-
grade, SPICE-validated netlist. This will allow us to extract
precise tRAS extensions, confirming (or tightening) the 32–42
ns range that we used as an upper bound in Section 4.2.

8. Conclusions

We propose a PRAC counting mechanism that eliminates the
explicit read-modify-write (RMW) operations required by the
current DDR5 PRAC specification. Our design employs one-hot
encoding, allowing counter increments through simple shift
operations. These shifts are efficiently implemented using pass
transistors to redirect data during the restoration phase. To
mitigate the higher area overhead associated with basic one-
hot counting, we introduce a modified encoding scheme that
can count up to twice as many states with minimal hardware
additions. This modification significantly reduces overhead,
limiting it to just a few percent for counts extending into the
hundreds. The primary advantage of our design is the removal
of performance-intensive RMW operations, substantially alle-
viating the timing and complexity challenges present in current
PRAC implementations.

5



Acknowledgment
The authors thank Winbond Technology (DRAM vendor) for
discussions on the feasibility of circuit modifications.

References
[1] A. Fakhrzadehgan, Y. N. Patt, P. J. Nair, and M. K. Qureshi, “Safeguard: Reducing

the security risk from row-hammer via low-cost integrity protection,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), 2022,
pp. 373–386.

[2] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for mitigating row
hammering in dram memories,” IEEE Computer Architecture Letters, vol. 14, no. 1, pp.
9–12, 2015.

[3] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
“Flipping bits in memory without accessing them: an experimental study of dram
disturbance errors,” in Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ser. ISCA ’14. IEEE Press, 2014, p. 361–372.

[4] JEDEC, “Ddr5 sdram,” https://www.jedec.org/standards-documents/docs/
jesd79-5c01, 2024, accessed: 2025-4-18.

[5] J. Woo, S. C. Lin, P. J. Nair, A. Jaleel, and G. Saileshwar, “ QPRAC: Towards Secure
and Practical PRAC-based Rowhammer Mitigation using Priority Queues ,” in 2025
IEEE International Symposium on High Performance Computer Architecture (HPCA).
Los Alamitos, CA, USA: IEEE Computer Society, Mar. 2025, pp. 1021–1037. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/HPCA61900.2025.00080

[6] M. Qureshi and S. Qazi, “MOAT: Securely mitigating rowhammer with Per-Row acti-
vation counters,” in Proceedings of the 30th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), vol. 1, 2025.

[7] M. Qureshi, A. Rohan, S. Gururaj, and P. J. Nair, “Hydra: Enabling Low-Overhead
mitigation of Row-Hammer at Ultra-Low thresholds via hybrid tracking,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2022.

[8] O. Canpolat, G. A. Yağlıkçı, G. F. Oliveira, A. Olgun, O. Ergin, and O. Mutlu, “Un-
derstanding the security benefits and overheads of emerging industry solutions to
DRAM read disturbance,” in 4th Workshop on DRAM Security (DRAMSec)), 2024.

[9] B. Nale and K. S. Bains, “Perfect row hammer tracking with multiple count incre-
ments,” Apr. 21 2022, uS Patent App. 17/561,598.

[10] O. Canpolat, A. G. Yaglikci, G. F. Oliveira, A. Olgun, N. Bostanci, I. E. Yuksel,
H. Luo, O. Ergin, and O. Mutlu, “ Chronus: Understanding and Securing the
Cutting-Edge Industry Solutions to DRAM Read Disturbance ,” in 2025 IEEE
International Symposium on High Performance Computer Architecture (HPCA). Los
Alamitos, CA, USA: IEEE Computer Society, Mar. 2025, pp. 887–905. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/HPCA61900.2025.00071

[11] J. Woo and P. J. Nair, “Dapper: A performance-attack-resilient tracker for rowham-
mer defense,” in 2025 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2025, pp. 1005–1020.

[12] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram simulator,”
IEEE Computer architecture letters, vol. 15, no. 1, pp. 45–49, 2015.

[13] H. Luo, Y. C. Tuğrul, F. N. Bostancı, A. Olgun, A. G. Yağlıkçı, and O.Mutlu, “Ramulator
2.0: A modern, modular, and extensible dram simulator,” IEEE Computer Architecture
Letters, vol. 23, no. 1, pp. 112–116, 2024.

[14] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa, H. Hassan, J. Park,
K. Kanellopoulos, T. Shahroodi, S. Ghose, and O. Mutlu, “Blockhammer: Preventing

rowhammer at low cost by blacklisting rapidly-accessed dram rows,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), 2021,
pp. 345–358.

[15] F. N. Bostanci, I. E. Yüksel, A. Olgun, K. Kanellopoulos, Y. C. Tuğrul, A. G. Yağliçi,
M. Sadrosadati, and O. Mutlu, “Comet: Count-min-sketch-based row tracking to
mitigate rowhammer at low cost,” in 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2024, pp. 593–612.

[16] A. Olgun, Y. C. Tugrul, N. Bostanci, I. E. Yuksel, H. Luo, S. Rhyner, A. G.
Yaglikci, G. F. Oliveira, and O. Mutlu, “ABACuS: All-Bank activation counters
for scalable and low overhead RowHammer mitigation,” in 33rd USENIX Security
Symposium (USENIX Security 24). Philadelphia, PA: USENIX Association, Aug.
2024, pp. 1579–1596. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/olgun

[17] A. G. Yağlikçi, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and O. Mutlu,
“Hira: Hidden row activation for reducing refresh latency of off-the-shelf dram chips,”
in MICRO, 2022.

[18] H. Luo, A. Olgun, A. G. Yağlıkçı, Y. C. Tuğrul, S. Rhyner, M. B. Cavlak, J. Lindegger,
M. Sadrosadati, and O. Mutlu, “Rowpress: Amplifying read disturbance in modern
dram chips,” in Proceedings of the 50th Annual International Symposium on Computer
Architecture, ser. ISCA ’23. New York, NY, USA: Association for Computing
Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3579371.3589063

[19] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page: a dram page-mode
scheduling policy for the many-core era,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-44. New
York, NY, USA: Association for Computing Machinery, 2011, p. 24–35. [Online].
Available: https://doi.org/10.1145/2155620.2155624

[20] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens, “Memory access scheduling,”
in Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat.
No.RS00201), 2000, pp. 128–138.

[21] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling for chip mul-
tiprocessors,” in 40th Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO 2007), 2007, pp. 146–160.

[22] W. K. Zuravleff and T. Robinson, “Controller for a synchronous dram that maximizes
throughput by allowing memory requests and commands to be issued out of order,”
May 13 1997, uS Patent 5,630,096.

[23] S. P. E. Corporation, “Spec cpu2006 benchmark suite,” 2006. [Online]. Available:
http://www.spec.org/cpu2006/

[24] “SPEC CPU2017 Benchmark Suite,” Standard Performance Evaluation Corporation.
[Online]. Available: http://www.spec.org/cpu2017/

[25] Transaction Processing Performance Council, “TPC Benchmarks.” [Online].
Available: http://tpc.org/

[26] A. Foundation, “Apache hadoop.” [Online]. Available: http://hadoop.apache.org/
[27] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “Mediabench ii video: Expediting

the next generation of video systems research,” Microprocessors and Microsystems,
vol. 33, no. 4, pp. 301–318, 2009.

[28] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on Cloud
computing, 2010, pp. 143–154.

[29] SAFARI Research Group, “ABACuS — GitHub Repository,” 2023. [Online]. Available:
https://github.com/CMU-SAFARI/ABACuS

6

https://www.jedec.org/standards-documents/docs/jesd79-5c01
https://www.jedec.org/standards-documents/docs/jesd79-5c01
https://doi.ieeecomputersociety.org/10.1109/HPCA61900.2025.00080
https://doi.ieeecomputersociety.org/10.1109/HPCA61900.2025.00071
https://www.usenix.org/conference/usenixsecurity24/presentation/olgun
https://www.usenix.org/conference/usenixsecurity24/presentation/olgun
https://doi.org/10.1145/3579371.3589063
https://doi.org/10.1145/2155620.2155624
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2017/
http://tpc.org/
http://hadoop.apache.org/
https://github.com/CMU-SAFARI/ABACuS

	Introduction
	Background
	DRAM Read Cycle Timing
	Restrictions and Overheads of PRAC

	Count Without Explicit Read-Modify-Writes
	Leveraging the Simplicity of One-Hot Encoding
	Extending Counts with One-Hot Encoding

	The Proposed Design
	Circuit Design for One-Hot Counting
	Timing for the Proposed Counting Mechanism
	Circuit Design for Extended One-Hot Counting

	Evaluation Methodology
	Results and Analysis
	Performance Overhead
	Performance Sensitivity to Increased tRAS
	Performance Sensitivity to RH Thresholds

	Discussion and Future Work
	Conclusions

