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ABSTRACT
This paper focuses on Memory-Controller (MC) side Rowhammer
mitigation for DDR5. MC-side mitigation consists of two parts: First,
a tracker to identify the aggressor rows. We focus on randomized
aggressor-row tracking, as such tracking can be performed with
negligible storage overhead. Second, a command to let the MC in-
form the DRAM chip to perform victim-refresh for the specified
aggressor row. To facilitate this, prior works assumed a per-bank
Nearby Row Refresh (NRR) command. However, the JEDEC DDR5
standard does not support NRR. It supports Directed Refresh Man-
agement (DRFM). DRFM can simultaneously perform mitigations
for one row each in 8 (DRFMsb) or 32 (DRFMab) banks. As DRFM
stalls 8-32 banks, it incurs high overheads. For example, at a thresh-
old of 1K, PARA incurs slowdowns of 7.9% with NRR, 23.5% with
DRFMsb, and 83% with DRFMab. Can the overheads of DRFM-based
methods be reduced with an alternative method of doing probabilis-
tic selection? In this paper, we compare three sampling methods for
DRFM-based mitigations: (1) PARA, which selects aggressor rows
with an independent-and-identical distribution (IID) probability, (2)
MINT, which selects aggressor row using a URAND sampling of
one element within a fixed-sized window, and (3) A new method,
MIST, which performs harmonic sampling, whereby rows are con-
tinuously selected with decreasing probability while ensuring that
all rows within an undefined interval still have a uniform chance
of getting mitigated. We show that MIST is better suited for DRFM
interface, as it can improve the mitigation-parallelism offered by
DRFM – when a neighboring bank issues a DRFM, MIST maximizes
the likelihood that all banks have an aggressor row to mitigate,
thereby reducing the rate of DRFM. At a threshold of 1K, MIST
incurs an average slowdown of only 4.18%.

1 INTRODUCTION
Computer systems are only as secure and reliable as the underlying
hardware. Rowhammer [7] breaks the isolation between neighbor-
ing rows of memory in the same bank. This poses both a reliability
and a security challenge. A program with access to one row may
inadvertently or maliciously cause changes to data in another row,
potentially belonging to a different program. The memory isolation
provided by the CPU through virtualization becomes ineffective if
an attacker can modify memory outside its address space.

In response to this, the industry initially focused on proprietary
in-DRAM Rowhammer mitigations, known as Targeted Row Re-
fresh (TRR). However, soon many of these proprietary mitigations
were circumvented by a combination of fuzzing and reverse engi-
neering [2] [4] [3]. An MC-based Rowhammer defense can enable
SoC vendors to securely mitigate Rowhammer without relying on
proprietary and obscure defenses provided by DRAM vendors.

‘DRAMSec 2025’, June 21, 2025, Tokyo, Japan
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Rowhammer mitigations operate by refreshing the victim rows
of a given aggressor row. However, the manufacturer of the Mem-
ory Controller may not know the row layout within DRAM chips
used with their Memory Controller. To counter this, the MC-based
Rowhammer mitigations often assume the existence of a Neighbor-
ing Row Refresh (NRR) command supported by the DRAM chip. The
memory controller can issue the NRR command to an individual
bank, identifying a Rowhammer aggressor row. The DRAM chip
will then refresh the potential victim rows of this aggressor.

However, JEDEC took a different approach to supporting MC-
based mitigations in DDR5. The DDR5Directed Refresh Management
(DRFM) implementation splits the operation into two parts: des-
ignating the aggressor rows and carrying out the mitigation. The
designation of the aggressor rows is done on a per-bank basis. How-
ever, mitigation occurs in batches. Two different granularities are
provided: DRFMsb will refresh neighboring rows for 8 banks, while
DRFMab will refresh neighboring rows for 32 banks. During DRFM
the corresponding banks are busy and cannot service any requests.
DRFM can cause significant slowdowns compared to NRR. Figure 1
shows the average slowdown of PARA with DRFMab, DRFMsb, and
NRR, as the threshold is reduced from 4K to 1K. At the threshold
of 1K, NRR has a slowdown of 7.9%, whereas DRFMsb incurs 23%
and DRFMab incurs 83%, almost 3x-8x higher than NRR.
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Figure 1: Slowdown of PARA when implemented with
DRAMab, DRFMsb, and NRR for TRH of 1K/2K/4K

Can the slowdown of DRFM-based mitigations be reduced by
using a probabilistic selection method different from PARA, while
still ensuring that all rows have an equal chance of being mitigated?
In this paper, we compare three different probabilistic selections:
PARA, MINT, and a novel sampling method, MIST, which is de-
signed with DRFM in mind. As a bank can receive a DRFM at any
time (triggered by another bank), sampling must ensure that a bank
has a row to mitigate in case a DRFM arrives from another bank.
This ensures that the mitigation parallelism offered by DRFM is
optimally used, thereby reducing the rate of DRFM.

Overall, our paper makes the following contributions:

• Compare and contrast different sampling methods for prob-
abilistic Rowhammer tracking, in the context of DRFM

• Propose MIST: a probabilistic Rowhammer mitigation that
makes effective use of the DDR5 DRFM interface

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


‘DRAMSec 2025’, June 21, 2025, Tokyo, Japan Salman Qazi and MoinuddinQureshi

2 BACKGROUND ON DRFM
Rowhammer mitigation consists of two components. First, a tracker
that can identify the aggressor row. Second, a mitigating action
that refreshes the victim rows associated with the given aggressor
row. Randomized methods of aggressor row detection (such as
PARA [7]) incur negligible storage overheads. In this work, we focus
on such randomized trackers. If the knowledge about row mapping
were public (for example, consecutive row addresses are physically
adjacent to each other), then the MC could perform mitigation by
simply activating the adjacent victim rows. Unfortunately, DRAM
chips use proprietary mappings, and prior research has shown that
consecutive row numbers do not always correspond to neighboring
rows on real DRAM chips [18].
NRR: Previous literature [11] [9] proposes a Neighboring Row Re-
fresh (NRR) (sometimes called Adjacent Row Refresh (ARR)) interface
to allow a memory controller supplier to implement Rowhammer
defenses without having the knowledge of DRAM internals. This
interface provides a single command that takes an aggressor row
number as input. The DRAM chip then refreshes all the rows that
may be potential victims of this aggressor row. With NRR, the key
assumption is that mitigating an aggressor row stalls only a single
bank (corresponding to the row being mitigated).
DRFM: DDR5 [5] provides support for MC-side mitigation. It con-
tains two parts. First, sampling the aggressor row into an internal
register (called DRFM Address Register, or DAR). MC samples the
address of the aggressor row into DAR by simply using the new
PRE+S command instead of PRE command when precharging the
bank after an access to the aggressor row. Second, there is a mitiga-
tion command that comes in two flavors. First, DRFMab triggers a
mitigation for all banks that have a sampled aggressor row. There
is a maximum of 32 banks in DDR5. Second, DRFMsb triggers miti-
gation for a single bank in each of the 8 bank group.

Figure 2: Overview of DRFM (a) Sampling address into DAR
(b) Mitigation command that can stall 8-32 banks

Figure 2 shows an overview of the DRFM sampling operation
and the DRFM mitigation operation. Each bank contains a single
sampled register (DAR). When DRFM arrives at a bank, the address
in DAR (if valid) is mitigated. If the DAR does not contain a valid
address, then an internal address tracked by TRR can be mitigated
(however, the MC does not get to know the mitigated address).
Need for Exploiting RLP: DRFM offers Rowhammer-Mitigation
Level Parallelism (RLP) as 8-32 banks could be mitigated with a
single command. However, existing schemes, such as PARA, are
unable to exploit RLP. The security of PARA depends on sending
a mitigation right after the row is sampled. We observe an RLP of
approximately 1 with both DRFMab and DRFMsb. We observe that
we can reduce the slowdown of DRFM by increasing the RLP.

3 IMPACT OF SAMPLING ALGORITHM
To ensure security, a randomized sampling algorithm must ensure
that all rows have an equal probability of getting mitigated. Other-
wise, the attacker can exploit the non-uniformity by focusing the
attack on positions that are less likely to be mitigated. However,
there are multiple ways of doing "uniform" sampling. In this section,
we will analyze three different methods of "uniform sampling" in
the context of a probabilistic DRFM-based Rowhammer defense.
The three implementations lead to differing results in terms of per-
formance, security, and simplicity. As DRFMsb is more efficient than
DRFMab, we assume that all algorithms mitigate using DRFMsb.
PARA (IID Sampling): On an activation, PARA [7] selects the
row for mitigation with probability 𝑝 (see Figure 3). Thus, PARA
performs Independent and Identically Distributed (IID) selection. The
selection parameter (𝑝) is based on the target 𝑇𝑅𝐻 and acceptable
failure rate (for all trackers, we target a bank failure rate of 1 per
10K years of continuous attack). For example, tolerating a threshold
of 1000 requires 𝑝 = 1/50. The sampling decisions in PARA are
independent, and the past decisions should have no bearing on
the future ones. Therefore, the security of PARA is easy to prove.
However, the security of PARA relies on doing a mitigation right
after the selection (delaying the mitigation can cause additional
activations to the selected row and thus reduce security). The cou-
pling of sampling and mitigation in PARA causes poor performance
with DRFM. For example, the recommended PARA implementation
(of sending a mitigation right after row selection) has an RLP of 1.
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Figure 3: OverviewofRandomizedTrackers: PARAandMINT.
PARA performs IID selection with probability 𝑝. MINT per-
forms URAND selection of one entry fromWindow (𝑊 ).

MINT (URAND Sampling): MINT [14] is a probabilistic tracker
for uniform selection (see Figure 3). MINT operates on a window
size of𝑊 , where𝑊 is the number of activations between consecu-
tive mitigations. Before starting a new window, MINT performs a
Uniform Random (URAND) selection of a number between 1 and
𝑊 and mitigates whichever row is activated at that position in the
window. The properties of MINT differ significantly from those
of PARA. For example, if only a single row is repeatedly activated
throughout the window, it is guaranteed to be selected. For a thresh-
old of 1000, MINT uses W=50, so the probability of selection is 1/50.

For securely implementing MINT with DRFM, we sample the
selected address in DAR at precharge (using the Pre+S command).
However, we wait until the end of the window to issue a DRFM
(if the DAR is not already mitigated by a DRFM issued by another
bank). The decoupling of sampling and issuing of DRFM is impor-
tant for security. Coupling sampling and mitigation for MINT can
create a vulnerability where an attacker can sense the sampling and
mitigation (using a timing side channel) and focus the activations
on rows that get accessed between sampling and the end of the
window (as such activations are guaranteed not to be selected).
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MIST (Harmonic Sampling): MIST is our novel DRFM-based
Rowhammer defense that is designed to maximize the RLP of DRFM.
The problem with MINT is that it requires the notion of a fixed-size
window for selection. Due to the parallelism of DRFM, a bank can
be affected by a DRFM intended for another bank. Therefore, in
reality, the window-size between two DRFMs is dynamic and the
selection must adapt to such dynamic window sizes, while ensuring
a maximum limit for the window size. Can we do uniform selection
of all items in a window, without knowing the window size? Yes,
with the insight of harmonic sampling employed by MIST.

Consider a window size of 1. The row is always sampled into
DAR. Now, when a second item arrives (window size of 2), we
want both, the first and the second item, to survive in DAR with
probability 1/2. This can be accomplished by overwriting the DAR
with the second item with probability 1/2. Now, a third item arrives
(window size of 3). We want all three items (first, second, third) to
be selected with probability 1/3. This can be accomplished by over-
writing the DAR with the third item with probability 1/3 (by design,
the third item is sampled with probability 1/3 and the remaining 2/3
is equally divided into the first and the second item). By induction,
when the Nth item arrives (window size of N), we overwrite the
DAR value with probability 1/N. When the window size reaches a
predefined maximum value (W), and DAR contains a valid value,
we issue a DRFM for mitigation. When a DRFM is received (issued
by the given bank or a neighboring bank), the address in DAR gets
mitigated, and the window size is reset to 0. As rows in a window
get selected (and overwrite existing values) with probability 1, 1/2,
1/3, and so on, we call this form of sampling Harmonic Sampling.
With Harmonic Sampling for a dynamic window size of𝑤 , each of
the𝑤 items get mitigated with a uniform probability of 1/𝑤 .
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Figure 4: Overview of MIST. MIST employs Harmonic Sam-
pling to ensure that (a) all positions have uniform probability
of mitigation (b) at any point of a non-zero window, the DAR
contains a valid item for mitigation for DRFM (even if the
DRFM is issued by the neighboring bank).

Figure 4 shows the overview of MIST. While MIST handles a
dynamic window size, there is a maximum limit to the size of the
window (W). Note that while the sampling probability of each po-
sition is harmonically decreasing, earlier rows can be overwritten
by the later rows; therefore, they can also get evicted. When both
sampling and replacement are taken into account, all rows have
a uniform probability of being present in the DAR when the sam-
pling window is terminated (by DRFM, issued by the given bank
or neighboring bank). As the window size is reset on the DRFM,
all banks that share the DRFM restart their sampling, and the bank
with the most activation will trigger the DRFM for all these banks.

Security of MIST: By construction, it is guaranteed that ACTs
going to each bank are sampled by MIST with a probability of
at least 1/𝑊 . This stems from the fact that either a window will
be complete (i.e. have length𝑊 ) or it will terminate early. If the
window is complete, then the probability of mitigation of each
element in the window will be 1/𝑊 . If the window ends early
(because another bank reached the end of its window first), then the
number of elements in the window will be fewer than𝑊 , resulting
in a probability of each element being mitigated exceeding 1/𝑊 .
We use techniques similar to those used in MINT [14] to derive a
sampling probability 𝑝 and hence the window size𝑊 = 1/𝑝 . For
a threshold of 1000, MIST uses max W=50, so the probability of
selection for all rows remains ≥ 1/50.

The window closure for all batched banks takes place when any
bank in the batch reaches the end of the window. This approach
does not reveal any information about what was actually sampled.
Note that no extra ACTs are required for side-channel mitigation:
we simply use PRE+S for those ACTs that are selected to be sampled.
Note on PRNG:Weaknesses in PRNG can have a significant im-
pact on the security of all probabilistic Rowhammer defenses [12].
Presence of side channels, for example, in the case of the PARA
implementation, has a greater risk. Some PRNG implementations,
such as those based on LFSRs, in theory, permit an attacker to
predict future outputs based on past outputs. We recommend us-
ing a cryptographically secure PRNG implementation if feasible.
If an LFSR must be used, it must at least be wide enough to make
brute forcing of the internal state infeasible and any side channels
revealing past sampling decisions must be avoided.

4 EVALUATION METHODOLOGY
We use DRAMSim3 [10], a detailed memory system simulator, to
model the DDR5 configuration. Table 1 shows the configuration for
our baseline system. We use the Minimalist Open Page (MOP) [6]
policy as it performs the best for our configuration. We assume that
the time taken by the NRR command is the same as DRFMsb.

Table 1: Baseline System Configuration

Out-of-Order Cores 8 cores at 4GHz, 4-wide
ROB size 256

Last Level Cache (Shared) 8MB, 16-Way, 64B lines, LRU
Memory size 32GB – DDR5

Memory bus speed 3 GHz (6000 MT/s)
Channels 1 (one 32GB DIMM)

Banks x Ranks x Sub-Channels x Rows 32×1×2×128K
tRCD – tPRE – tRC 14ns – 14ns – 46ns
tDRFMsb, tDRFMab 240 ns and 280 ns

Page Closure Open Page Policy
Address Mapping MOP4 [6]

4.1 Workload Characterization
We use 12 benchmarks from SPEC2017 [1] with an MPKI of at
least 1, 6 from Graph-Analytics Platform (GAP) [15] and 4 from
STREAM. We use representative sections of the traces. We run the
applications in 8-core rate-mode and continue executing until each
core completes 250 million instructions. We use weighted speedup
as a performance metric.
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Figure 5: Performance Impact of PARA, MINT, and MIST with DRFMsb at threshold of 1K. PARA and MINT incurs an average
slowdown of 23% and 31% respectively, whereas, MIST incurs an average slowdown of 4.18%.
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Figure 6: Rowhammer-Mitigation Level Parallelism (RLP) of PARA, MINT, and MIST. Both PARA and MINT have an average
RLP of 1, whereas, MIST has an average RLP of approximately 8 (which is similar to the ideal value for DRFMsb).

5 RESULTS AND ANALYSIS
5.1 Impact on Performance
Figure 5 shows the slowdown for PARA, MINT, and MIST when
implemented with DRFMsb for a threshold of 1K. The bar labeled
Gmean shows the Geometric Mean over all the 22 workloads. PARA
and MINT incur an average slowdown of 23% and 31% respectively,
whereas, MIST incurs an average slowdown of only 4.18%. This
occurs because MIST is better able to exploit the parallelism offered
by DRFM. When a DRFM arrives, all the banks in the batch have
something to mitigate, which resets their windows and delays the
further onset of DRFM.

5.2 Impact on RLP
Figure 6 shows the RLP for PARA, MINT, and MIST when imple-
mented with DRFMsb. We define RLP as the average number of
banks that perform a mitigation when the batch receives a DRFM.
For PARA and MINT, as they do not synchronize their mitigation
with other banks, the episode of one bank triggering a DRFM when
other banks do not have anything to mitigate is quite high. Their
average RLP is approximately 1.

MIST is designed with the awareness that a DRFM may arrive at
anytime due to the need for mitigation at a neighboring bank. So,
each bank tries to retain a valid entry in the DAR, such that when
a DRFM arrives, the bank is able to mitigate the entry (and reset
the window). The average RLP of MIST is approximately 8, which
is close to the idealized value for a DRFMsb.

We note that for cam4, the RLP of MIST is lower than 8. This
occurs because the memory activations are non uniformly spread
across the banks. When a bank reaches the maximum activation for
MIST (50 for a bank for the threshold of 1K), some of the banks do
not receive even a single activation and have nothing to mitigate.

5.3 Comparison to PRAC
To mitigate Rowhammer in a principled manner within the DRAM
chips, JEDEC introduced Per-Row Activation Counter (PRAC). PRAC
extends the DRAM array such that each row has an activation
counter. It also changes the DRAM timings to support the read-
modify-write of the activation counter. Unfortunately, the increased
memory timings (tRC increases by about 10% and tRP increases by
150%) can cause significant slowdown, regardless of the tolerated
threshold. Table 2 compares the slowdown of PRAC and MIST for
thresholds of 500 to 4K. We implement PRAC using MOAT [13].

Table 2: Comparison of MIST with PRAC

Threshold 4K 2K 1K 500
MIST 0.96% 2.00% 4.19% 8.77%
PRAC 9.70% 9.70% 9.70% 9.70%

The slowdown of PRAC remains high (on average, 9.70%) across
all thresholds (500-4K). PRAC slowdown is not due to mitigations
but due to the latency for counter updates. The slowdown with
MIST using DRFMsb is only 0.96% at the current threshold of 4K
and is still lower than PRAC (8.77% vs. 9.70%) at threshold of 500.
Thus, MIST+DRFM can provide an attractive alternative to PRAC.
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Figure 7: Performance Impact of Delayed-PARA (PARA-D), Delayed-MINT (MINT-D), and MIST with DRFMsb. PARA-D incurs
an average slowdown of 8.41%, MINT-D of 4.23%, and MIST incurs 4.18%.
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Figure 8: Rowhammer-Mitigation Level Parallelism (RLP) of PARA-D, MINT-D, and MIST. PARA-D has an RLP of 3.24, MINT-D
has an RLP of 7.45 and MIST has an RLP of 7.97 (close to the ideal value of 8 for DRFMsb).

5.4 Comparison with Delayed Mitigation
Each bank is provisioned with only a single DAR register per bank.
A recent work [17] explores another way to increase the RLP for
PARA and MINT is to delay mitigation until there is a conflict for
the DAR (if so, issue a DRFM and then sample the conflicting row).
In this section, we consider such delayed mitigation and call such
designs PARA-D and MINT-D, respectively. For design details of
PARA-D and MINT-D, we refer the readers to DREAM [17].

ACT DRFMChk Pre+S ACT PRE ACT Pre+S

1 2 3Sample Delay DRFM Issue DRFM and Sample

Chk Chk

BankID
DAR Valid? Y

0
Y
1

Y
2

Y
3

Y
4

Y
5

N
6

Y
7

Figure 9: Overview of delayed PARA/MINT. It performs a
Tracker-Check (Chk) before ACT, and if ACT will be sampled
and the DAR is full, we issue a DRFM before the ACT.

Design: Figure 9 shows the overview of Delayed PARA/MINT. To
enable delayed mitigation, we first do a tracker check (Chk) before
doing the activation to determine if the upcoming ACT will get
sampled into the DAR. Based on the Chk, there are three scenarios:
1 The DAR is empty, and the tracker decides to sample the ACT,
we perform the activation, and when we need to do row closure,
we use Pre+S to sample the row into DAR (DRFM is not issued). 2

The tracker decides not to sample the activation. In this case, the
subsequent row closure happens with regular precharge. 3 The
tracker decides to sample the activation, however, the DAR already
contains a valid entry. We first issue a DRFM command (which
clears the DAR), then perform the activation, and at row closure,
we use Pre+S to write to DAR.
Impact on Slowdown: The delayed mitigation for PARA-D and
MINT-D allows other banks the time to write to their own DAR.
Improved RLP reduces the need for frequent DRFM. Figure 7 shows
the slowdown of PARA-D, MINT-D and MIST. PARA-D incurs an
average slowdown of 8.41%, MINT-D of 4.23%, and MIST of 4.18%.
Impact on RLP: Figure 8 shows the RLP for PARA-D, MINT-D and
MIST. On average, PARA-D has an RLP of 3.24, MINT-D of 7.45,
and MIST of 7.97. Thus, delayed mitigation can help both PARA
and MINT, however, they are still less effective than MIST.
Disadvantage of Delaying Mitigation: Delaying the DRFM until
the next time another row needs to be sampled can affect the toler-
ated threshold, as the attacker could cause extra activations during
this period. Delaying the mitigation for PARA until next sampling
increases the tolerated threshold by about 15% (see Appendix-A
of [17]). A design may need additional complexity (or more fre-
quent mitigation) to account for the increased threshold.WithMIST,
we guarantee that the mitigation is issued within the maximum
window size, thus there is no delay past the window and no im-
pact on the tolerated threshold. MIST has lower performance and
complexity compared to alternative sampling methods.
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6 CONCLUSION
For DDR5, implementing MC-side Rowhammer mitigation requires
DRFM. As DRFM stalls an increased number of banks (8-32) conven-
tional methods of sampling, such as PARA, can cause significant
slowdowns. In this paper, we compare the performance impact
of three sampling techniques: PARA, MINT, and MIST. MIST is
our novel algorithm that uses harmonic sampling to exploit the
increased RLP with DRFM. We show that MIST can tolerate a 1K
threshold while incurring only 4.18% slowdown and has lower
overhead than PRAC even at thresholds as low as 500.

We note that a recent patent [19] from Qualcomm describes a
scheme in which a DRFM-like command is issued when a PRNG
output matches a command index, similar to MINT with shifting
window sizes. However, the patent does not describe the security
and performance analysis of such a design.
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APPENDIX-A: SECURITY MODEL FOR MIST
For a given maximum window size of𝑊 , the security model of
MIST is similar to MINT with a window of𝑊 . This is because, for
the optimal attack pattern for a bank under MIST, a DRFM is issued
no earlier thanW activations. Fewer activations in the window only
increase the probability of detection. So, an attacker would issue W
activations to a bank, and only then a DRFM would occur. In such
a case, all the rows activated within the window are selected with
probability p=1/W and MIST degenerates into MINT. Note that
MIST is simply a performance optimization, even if the security for
worst-case pattern is the same as MINT.

The security model for MINT/MIST can be derived using the
following assertions: (1) The selection decision for the current
window is not influenced by which addresses are accessed in the
past/future windows. (2) The likelihood of a row getting selected
is invariant to the order of the items appearing in the window
as all items are selected with equal probability (3) To maintain a
low likelihood of getting selected, the attacker must avoid having
multiple activations to the same attacked row within the window,
otherwise the selection probability increases proportionately to the
number of copies, significantly weakening the attack. Thus, for the
best attack, the attacker is restricted to having a single activation
on the given attack row within the window. (4) There are only a
limited number of windows within tREFW, and any window in
which the attacked row is not activated reduces the time available
for the attacker, so for the best attack, the attacker must activate
the attacked row exactly once per window. Thus, the optimal attack
pattern for a given attack row is exactly one activation of the row
in each window.

Let there be 𝑁 ((tREFW-8192*tRFC)/(W*tRC+tDRFM)) windows
in tREFW. Let 𝑇 be the Rowhammer threshold. We use the Saroiu-
Wolman method [16] to compute the probability of failure (𝑃𝑓 ) for
a single row, which denotes T consecutive unmitigated activations
within N activations. As the window contains𝑊 slots, the attacker
can concurrently attack𝑊 rows, so the probability of failure 𝑃𝑓𝑊
on𝑊 rows is the product of W and 𝑃𝑓 . We select the double-sided
threshold (TRHD) such that the Mean-Time-To-Failure (MTTF) for
a bank is 30K years. For our target MTTF, the TRHD of MINT/MIST
is approximately 20*W. Thus, for W=50, we get TRHD=1K.

We note that, since DRFM uses the Bounded Refresh (BR) mode,
which is designed to mitigate transitive attacks, such as Half Dou-
ble [8] (by refreshing distant rows with a small probability), we do
not consider such attacks in the MIST security model.

APPENDIX-B: HW IMPLEMENTATION OF MIST
MINT requires a selection probability that reduces (harmonically)
as the number of items in the window increases. Like PARA and
MINT, MIST requires a pseudo-random number generator (PRNG).
As we are interested in an MC-based implementation (where the
logic area is less constrained than the in-DRAM setting), we use a
cipher to generate the random numbers. Consider a 64-bit PRINCE
cipher, initialized with a random key and the cycle count being
provided as input. The output of the cipher is the random value.
To select with probability 1/K, we compare if the generated N-bit
PRNG value is smaller than (2𝑁 )/𝐾 . If so, the item is selected.
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To avoid integer division at runtime, we can initialize a table that
contains the division results for various values of K (K=2,3,4 up-to
W). Then, the decision becomes comparing the PRNG value to the
corresponding value of the table. For W=100, we need a 100-entry
table, where each entry has a given number of bits (N).

Ideally, we want to have as few bits in the table as possible while
still ensuring security. Due to the imprecision of the entry size, not
all positions may be mitigated with the same probability p=1/W.

Let𝑀𝑖 be the Mitigation Probability of position i within the win-
dow. This value is a product of the Selection Probability (𝑃𝑖 ) and
the Survival Probability (𝑆𝑖 ). The survival probability denotes the
probability that no other item is selected in the remaining window.

𝑀𝑖 = 𝑃𝑖 · 𝑆𝑖 (1)

𝑆𝑖 =

𝑊∏
𝐾=𝑖+1

(1 − 𝑃𝐾 ) (2)

Now, due to hardware imprecision, each item, instead of being
selected with probability 𝑃𝑖 , is selected with probability 𝑃𝑖 . Then,
we can compute 𝑆𝑖 using 𝑃𝑖 . Similarly, we can compute the resulting
mitigation probability for each position �̂�𝑖 as 𝑃𝑖 · 𝑆𝑖 .

Ideally,𝑀𝑖 = 1/𝑊 for all positions, if hardware implementation
was precise. However, due to imprecision, some positions may have
lower �̂�𝑖 . We evaluated �̂�𝑖 for all positions (i=1 to W) and found
the minimum value for �̂�𝑖 (as that would be the optimal position
for the attacker to place the attack line).

For our implementation, we select the N-bit value in our table
such that the worst-case �̂�𝑖 is within 1% (relative value) of the ideal
value of 𝑀𝑖 . Thus, the overall impact on TRHD remains within
1% (for example, the hardware approximations would result in a
TRHD of 1.01K when the target is 1K). For obtaining such a bound,
we would need 12/13/14 bits per entry for W=25/50/100 (TRHD of
500/1K/2K). The total SRAM cost of the table would be 37 bytes, 87
bytes, and 175 bytes, respectively for TRHD of 500/1K/2K. As the
table is shared by all banks and ranks within the channel, the SRAM
overhead of the proposed implementation is negligibly small.

APPENDIX-C: SECURITY REQUIREMENTS
Our paper compares three probabilistic schemes: PARA, MINT,
and MIST. All of these schemes are designed to provide a uniform
probability of mitigation. However, these schemes have different
security requirements and associated performance overheads.

The security requirement for PARA depends on doing mitigation
right after selection. Any delay can allow the attacker to cause
additional activations in the time between selection and mitigation.
For performance, we want to delay the mitigation (DRFM), whereas
for security, we want to send the mitigation quickly.

MINT was developed in an in-DRAM setting, where mitigation
occurs at the end of the window (during REF or using RFM). For an
MC-side implementation, it is essential that the mitigation is done
such that the selection decision remains unknown (for example,
sendingmitigation right after selectionwill allow the attacker to use
the timing channel to know which row was selected and attack the
row during the remaining activations within the window, which are
guaranteed not to be selected). So, for MINT security, mitigation

(DRFM) must be delayed until the end of the window, whereas
sampling can still be performed when activation occurs.

As MIST performs continuous sampling (with decaying prob-
ability), sending a DRFM as soon as sampling occurs will cause
unacceptable performance overhead. For example, the first row is
accessed, it is sampled, and we issue a DRFM. Thus, the perfor-
mance of MIST relies on NOT sending a DRFM until the end of
the window (however, if another bank issues a DRFM, then hav-
ing something already sampled that can be mitigated). Thus, MIST
maintains the same security as MINT; however, for performance,
sampling and mitigation are decoupled, and sampling is performed
more frequently than mitigation.
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