
Softhammer: Exploiting Rowhammer Bit Flips without Crashing

Finn de Ridder Patrick Jattke Kaveh Razavi
ETH Zurich

Rowhammer exploits rely on very particular bit flips. Since
such bit flips can be hard to find, the attacker generally tries to
trigger as many as possible in the hopes of triggering the flips
they need. This, however, has an undesired side effect: extra-
neous bit flips may cause irrecoverable corruptions, resulting
in a crash. We show that existing techniques are incapable of
disabling most of these extraneous bit flips. We present Softham-
mer, a comprehensive solution that combines two techniques to
address this problem. First, we show how a step-wise reduction
of Rowhammer-inducing accesses enables the attacker to disable
most extraneous bit flips. Second, to counter any remaining flips,
we show how to minimize the chances of the victim accessing a
corrupted pointer and crashing. We conclude with a case study
showing that Softhammer is able to reduce the number of ex-
traneous bit flips by 87.2 % in a state-of-the-art Rowhammer
JavaScript exploit on a DDR4 device.

1. Introduction

Rowhammer has grown from an exotic hardware bug into
a well-studied security vulnerability [1–15]. A problem that
has hardly been considered, however, is the lack of control
over which bits might flip in the exploitation step of the attack.
In practice, this means the attacker ends up triggering more
bit flips than expected. Such extraneous bit flips may cause
irrecoverable corruptions that lead to crashes. These crashes
are problematic, as they prematurely terminate the attack.
We show that existing techniques are either ineffective,

such as using uniform data patterns for victim and aggres-
sor cells [12], or fail to suppress unwanted bit flips that have
not been detected during templating [16]. We then present
Softhammer, a new technique that uses step-wise reduction of
Rowhammer-inducing accesses and avoids unnecessary victim
accesses to potentially corrupted pointers to counteract these
extraneous bit flips. Our evaluation shows that Softhammer is
able to reduce the number of extraneous bit flips in a recent
Rowhammer-based sandbox-escape [8] by 87.2 %.

Exploitation with Rowhammer. Most offensive work
on Rowhammer focuses on triggering a bit flip in the first
place [5, 15, 17–19]. While a bit flip is indispensable for a
Rowhammer attack, it still is only the beginning. The remain-
der of the attack—using the bit flip to compromise the system—
is equally important when it comes to assessing the severity
of Rowhammer. It is also here, in this phase of the attack,
the phase in which the attacker actually exploits their bit flips,
where extraneous bit flips become problematic. This exploita-
tion phase consists of two steps: a memory massaging and a
reflip step. In the first step, the attacker moves vulnerable rows
(i.e., the rows in which they are able to flip a bit) to the victim
so as to land the bit flip inside a memory region otherwise inac-

cessible to the attacker. After the memory massaging step, the
attacker retriggers the bit flip—the reflip step—to then actually
take advantage of the corruption and finish the attack.

Extraneous bit flips. Reflipping is risky: the attacker may
accidentally corrupt a victim-controlled pointer and as soon
as this pointer is used (e.g., as part of checking for a successful
flip), a page fault due to the invalid access ends the attack with-
out success. Previous work relies on uniform data patterns (i.e.,
0-0-0 or 1-1-1 in the aggressor and victim rows) to disable
extraneous flips [12], data patterns that constantly change [16],
or speculative execution [10]. These techniques have either
been applied to older DDR3 devices and only target extraneous
bit flips discovered during templating [12, 16], or impose addi-
tional constraints on the attacker [10, 16]. Hence, it is unclear
how an attacker can generically handle extraneous bit flips
triggered during the reflip phase on newer DDR4 devices.

Softhammer. We first show that uniform data patterns can
only marginally reduce the number of extraneous bit flips on
DDR4. Our proposed solution, Softhammer, handles these ex-
traneous bit flips using two techniques. First, we show that
a step-wise reduction of Rowhammer-inducing accesses sig-
nificantly reduces the number of extraneous bit flips, even if
they only appear during the reflip phase. Our results show that
soft hammering allows the attacker to go from around 10–30
extraneous bit flips to only 1–5. To address these remaining
extraneous flips, Softhammer relies on priming. Priming allows
Softhammer to rediscover the exploitable bit flips safely after
memory massaging by using objects that are hard to corrupt.
Hence, even if new extraneous bit flips happen, they will not
lead to crashes. Upon rediscovering the exploitable bit flips,
these safe objects are replaced with target objects, which are
then exploited.

We use Posthammer’s type-flipping exploit [8], which is par-
ticularly prone to extraneous bit flips, as a case study to show
Softhammer’s effectiveness. Softhammer cuts extraneous bit
flips by 87.2 % and achieves a 40.0 % end-to-end success rate.

Contributions. Our contributions are as follows.

1. We analyze the problem of triggering extraneous bit flips
that greatly affects the feasibility of Rowhammer exploits
and show that uniform data patterns are largely ineffective
in addressing this problem on DDR4 devices.

2. We address this problem with Softhammer: a technique
that combines hammering softly with avoiding dangerously
corrupted memory areas to prevent page faults.

3. We show that Softhammer improves the reliability of a
state-of-the-art Rowhammer exploit.

1



Build 
pattern 

Template

Massage Reflip
Exploit

Finish
Flip

Start Hammer target object

Hammer dummy data

Figure 1. Flow of a Rowhammer attack. Modern attacks require
massaging and reflipping (bottom path).

2. Background
The original Rowhammer paper [17] did not contain a Rowham-
mer exploit and left it for future work. By now, several types of
Rowhammer exploits exist [1–7, 7, 9, 9, 11, 13, 15, 20–29]. Most
attacks (e.g., [2, 4, 5, 7, 9, 13]) but not all (e.g., [1]) include the
memory massaging and reflip steps mentioned before. After
very briefly introducing Rowhammer itself, we will consider
these phases in detail, as they are crucial to understanding the
problem of extraneous bit flips.

2.1. Rowhammer
DRAM is organized into banks that logically store data in
matrices. By repeatedly accessing a particular row, the attacker
may trigger a bit flip in one of the neighboring rows without
having to access them. Herein lies the power of Rowhammer:
it gives the attacker the ability to flip a bit in memory they do
not have access to.

Triggering a bit flip is not easy: first, not all rows are equally
vulnerable, and second, modern DRAM technology comes
equipped with Rowhammer defenses. In practice, this means
the attacker will be searching for bit flips—trying different ac-
cess patterns at different physical locations—before launching
the attack. This process is also called templating [4, 5, 11]. Dur-
ing templating, the attacker continuously checks for bit flips
in the so-called victim rows that neighbor the aggressors—the
rows repeatedly accessed to cause the Rowhammer effect. It
is during templating that the attacker learns the (i) locations
of both the exploitable and extraneous bit flips, and (ii) the
direction of each flip.

The fact that Rowhammer exploits rely on rather particular
bit flips further complicates templating. Whether a bit flip is
useful for the attacker—exploitable—depends on the direction
of the bit flip (zero-to-one or one-to-zero), the bit flip’s offset
(usually within an 8-byte word), and whether the bit flip is
reproducible, as not all bit flips are [30, 31]. Moreover, some-
times attacks [9, 29] need more than one bit flip, each with its
own profile. Consequently, templating can take a significant
amount of time depending on the complexity of the attack.

2.2. Memory massaging
After templating, the attacker proceeds in one of two ways,
see Figure 1 (top and bottom paths). Depending on the attack
target, the attacker either directly hammers the target object
(e.g. a page table entry [1]) they intend to corrupt, or the at-
tacker first hammers victim rows filled with dummy data under
their control. In the first case, finding a bit flip is equivalent
to exploiting it. In the second case, after a bit flip has been
found, the attacker starts massaging memory to place the tar-
get object at the physical location of the bit flip. In practice, the
vulnerable memory region is first released, after which many

HammerSimple patterns
Target

Complex patterns

4 kB pages
Target Target Target Target Target Target

Dummy Dummy Dummy Dummy Dummy Dummy Dummy

Dummy Target Dummy Dummy Dummy Dummy Dummy

HammerHammerHammer

Bit flip

Reflip
Massage

Figure 2. Simple and complex patterns. Complex patterns (bot-
tom) have introduced the need for memory massaging and reflipping.
The arrays of target objects (orange) and dummies (transparent) visu-
alize the virtual memory regions inside which the attacker hammers.

target objects are allocated (sprayed) in the hope that the oper-
ating system will reuse the vulnerable memory for one of them.
This hope is well-founded: for example, in Posthammer [8],
reuse succeeds 80% of the time, and this rate could likely be
improved using the techniques described in [14]. Afterwards,
the attacker can corrupt the target object by retriggering the
bit flip, as illustrated in the lower part of Figure 1.

The difference between these paths is further illustrated in
Figure 2. Simple patterns that involve only a single aggressor
(i.e., single-sided Rowhammer) can be launched directly at
the target object, eliminating the need to perform memory
massaging. In contrast, complex patterns that involve many
aggressors (bottom of Figure 2), hammer with dummy data
first before massaging target objects into vulnerable rows and
reflipping the vulnerable bit. The difference between these
strategies is caused by the fact that it is hard to build a complex
Rowhammer pattern on top of target objects. In particular, the
attacker may have only partial or indirect access to the target
object. This is not surprising, as it is also the reason why the
target is the object of interest to the attacker in the first place.

As it is hard to trigger bit flips using single-sided Rowham-
mer [1, 32, 33], the more effective double-sided Rowhammer
pattern (two aggressors around a victim row) has long been the
dominant one [1, 2, 4, 6, 21, 22, 29, 34]. However, its success has
led to effective mitigations against it [18], forcing attackers to
build more complex access patterns. In this work, all patterns
consist of two double-sided pairs (four rows in total) hammered
non-uniformly—that is, the rows are accessed with varying fre-
quencies. The patterns form a subset of Posthammer’s single-
block class [8], itself a subset of the larger non-uniform space
defined by Blacksmith [19].

2.3. Reflipping
With the target object stored in a vulnerable row, the attacker
wishes to retrigger their exploitable bit flip(s) and corrupt the
target object. However, while checking for a successful bit flip
was easy—and safe—before, it is no longer now that the vul-
nerable row is only partially attacker-controlled. This means
the attacker (i) can only indirectly find out whether their bits
have flipped and while doing so (ii) risks crashing the victim
due to extraneous bit flips elsewhere in victim data. We will
investigate this problem more closely in the rest of this work.

2



Scans target objects

Target objects

Array header Array header Array header Array header Array header

Extraneous bit flip Desired bit flip

Attacker

Segfault Successful exploit

Had the attacker not crashed:

Figure 3. Risk of crashing. A single extraneous bit flip might halve
the attack’s success rate.

3. Threat model
Our attacker is able to trigger Rowhammer bit flips on the
victim’s machine. Their goal is to exploit these bit flips by
corrupting a particular target object. The target object cannot
be corrupted arbitrarily as there are (i) dangerous, (ii) inno-
cent, and (iii) exploitable bit flips. Dangerous bits will cause a
page fault upon flipping them, followed by access to the target
object. The innocent bits do not cause a segfault upon flipping
them, but neither help the attacker. Finally, the exploitable
bits are those targeted by the attacker: if they flip and the
victim/attacker accesses the target object, the exploit succeeds.
What this means exactly depends on the attack, for example,
leaking sensitive data or hijacking the control flow.

4. Challenges
The attacker’s problem is that after memory massaging, re-
flipping might crash the attacker or victim because the target
object has been irrecoverably corrupted.

We split the problem in two: first, the number of extraneous
flips needs to be reduced, and second, we need to find a way to
safely scan target objects while reflipping, as not all extraneous
bit flips can be avoided. Our first challenge is therefore:

Challenge 1. Only trigger the bit flips necessary for ex-
ploitation and not more.

To address this challenge, the attacker needs to combine two
things: first, mirroring [12, 16], and second, hammering less. It
is by combining these techniques that we have been able to
solve this challenge. On their own, neither of these techniques
suffices, but combined in our Softhammer algorithm they are
able to reduce the number of extraneous bit flips by more
than 80%. The idea is to gradually hammer less depending on
whether (i) new bit flips are observed and on whether (ii) the
exploitable bit flips are triggered. The details will be presented
in Section 5.
While Softhammer eliminates most extraneous bit flips, a

handful (1-5) will persist. In other words: it is not possible to
cause exploitable bit flipswithout also causing some extraneous
flips. Our second challenge is therefore:

Challenge 2. Safely detect successful exploitation without
crashing the attacker and/or victim process.

The second challenge is to detect the flipping of an ex-
ploitable bit flip without crashing. After massaging, the at-
tacker is unaware of which target object will be exploited.
Consequently, after hammering a second time, the attacker

will check all of them, risking a page fault every time a target
object is read, see Figure 3. The figure shows how a single
extraneous bit flip might halve the attack’s success rate.
We solve this problem by introducing a priming phase, be-

tween reflipping and exploitation, with the sole purpose of
safely rediscovering the location of the exploitable bit flip.
More details will be given in Section 6. We conclude the paper
with a case study that combines both solutions in Section 7.

5. Avoiding unnecessary bit flips
This section explains how the attacker can hide extraneous bit
flips. Our solution consists of two parts: mirroring and ham-
mering less. We combine them in the Softhammer algorithm
presented in Section 5.2.

5.1. Mirroring

The Rowhammer effect is affected by the data stored in the
aggressor and victim rows [17, 33]. In particular, by storing
the inverse of the to-be-flipped bit in the opposite (aggressor)
rows, the attacker maximizes their chances of flipping the
vulnerable bit. This has given rise to checkered and striped
data patterns to improve hammering efficiency [35, 36]. We
call this technique striping after ECCploit [12].
In our case, the attacker wishes to selectively improve the

hammering efficiency while reducing it elsewhere. Based on
the above, this can be done simply by (i) striping bits that are
meant to flip while (ii)mirroring [12,16] the value of any other
vulnerable bit—extraneous bits—in the adjacent aggressor rows.
As we will show in Section 5.2, mirroring helps reduce the
number of extraneous bit flips, but only when combined with
hammering less.
Masking. A different but related strategy to hide bit flips is
masking. By masking, the bit that is not meant to flip is set to
its post-flip value. As a result, it will not flip “again” as any
given bit vulnerable to Rowhammer tends to flip in only one
direction [11, 17, 19]. However, masking requires write-access
to the vulnerable bit, which the attacker generally does not
have during the reflip phase. Worse still, the attacker may not
even have read-access and is therefore unaware of the data
held in the vulnerable rows once they have been released.
The situation is less troubling than it appears because mir-

roring ensures that the attacker will either (i) have mirrored
the bit as planned or (ii) the bit has been masked and will
therefore not flip again. To illustrate, consider a vulnerable
0-to-1 flip: the attacker either correctly mirrors it by enclosing
it in zeroes, giving 0-0-0 (aggressor-victim-aggressor), or the
bit is masked as 0-1-0. Crucially, the attacker needs only the
flip’s direction, determined during templating, not the victim
bit’s value after massaging.
Access assumptions. To mirror collateral bit flips, the at-
tacker must have access to the aggressor rows. Such access is
inherently available, at least partially, since hammering itself
would be impossible without it. Therefore, mirroring offers
greater versatility compared to masking, which requires the
attacker to control the victim rows.

3



0 25 50 75 100

Round

0

10

20

30

E
xt

ra
n

eo
u

s
fl

ip
s

0 25 50 75 100

Round

0 25 50 75 100

Round

(a) Mirror only

(b) Reduce only

Hammer count (%)

0

20

40

60

80

100

H
am

m
er

co
u

n
t

(%
)

(c) Softhammer

Triggered exploitable and extraneous bit flips Failed to trigger exploitable bit flips: extraneous flips only

Figure 4. Results of the mirroring experiment. Softhammer (c) is the only effective strategy. Alternatively, by only reducing the hammer
count (b), the attacker loses the exploitable flips while by only mirroring (a), too many extraneous flips remain.

5.2. Hammering less

While templating, see again Figure 1, the attacker wants to
trigger as many bit flips as possible and will therefore hammer
generously. The problem, however, is that this makes mir-
roring largely ineffective. Indeed, to make mirroring useful,
the attacker needs to hammer softly. We quantify this effect
through the mirroring experiments below. All experiments
are performed on an Intel Core i7-7700K (Kaby Lake) CPU
equipped with a 32 GB DDR4 Samsung DIMM.
Mirroring experiment. We consider the phase after templat-
ing and before massaging, in which the attacker tries to hide
all extraneous flips before launching the attack. The templat-
ing phase ends as soon as the attacker triggers two particular
bit flips (as in [8]) that we define as exploitable. This is our
starting point, or round zero in the Figures 4a, b, and c.

Next, the attacker starts the process of hiding the extraneous
flips using one of the three strategies below. This process
consists of 100 hammer rounds during which the attacker
constantly adjusts the masks and/or hammer count, depending
on the employed strategy. Once more, the attacker’s goal is to
reduce the number of extraneous bit flips, but not at the cost of
losing the exploitable flips.

For each round, the figures provide three pieces of informa-
tion: first, the number of extraneous bit flips triggered during
the round (height of the bar, left axis), second, whether the
exploitable bit flips were also triggered (color of the bar), and
third, the relative hammer count (dark orange line, right axis)
used by the attacker.

A hammer count of 50% means the attacker hammers each
aggressor half as often as during templating. During templat-
ing, the hammer count (i.e., 100%) is high to find exploitable
bit flips as quickly as possible. Building and synchronizing
a complex pattern is relatively slow, so it is worthwhile to
hammer heavily before moving on to the next pattern.
Strategies. Each of the figures evaluates a different strategy
to hide extraneous bit flips. From left to right, they are:

1. Mirror: the attacker mirrors extraneous bit flips without
reducing the hammer count, i.e., it remains 100% through-
out the experiment.

2. Reduce: every third round, the attacker reduces the ham-

mer count by 20%, regardless of whether the exploitable
bit flips were triggered. No mirroring is used.

3. Softhammer: the attacker mirrors extraneous bit flips
and reduces the hammer count by 20% if and only if: first,
both exploitable bit flips are triggered, and second, all
extraneous flips that are triggered have already been mir-
rored. Whenever new extraneous bit flips appear, they are
mirrored first, and the hammer count is not reduced that
round.

Results. Based on the results in Figure 4, we make the follow-
ing observations about the effectiveness of these strategies.

Mirror. This strategy is ineffective: while it reduces the num-
ber of extraneous bit flips by approximately 40% going from
round zero to one (indeed hard to see), the remaining 60% of
extraneous flips are not affected. While the attacker does not
lose their exploitable bit flips, ~20 extraneous bit flips is still
too many for a reliable attack (see Section 7).

Reduce. With this strategy, the attacker risks losing the ability
to retrigger the exploitable bit flips: the right side of Figure 4b
is all orange. While there is a chance that exploitable bit flips
are among those that are easy to trigger, which would make
this strategy effective, it is more likely that exploitable bit flips
are only averagely easy/hard to trigger. As a consequence, the
attacker will either lose them or be stuck with ~10 extraneous
flips, as the figure suggests.

Softhammer. The Softhammer strategy allows the attacker to
reduce the number of extraneous flips to less than 5 without
losing the ability to occasionally trigger the exploitable bit flips
(e.g. in rounds 43, 77, and 97). This is sufficient for a successful
attack, because the attacker can retry reflipping more than
once. It is fast, too: 100 reflip attempts at a relative hammer
count of only 1% (round 100) is roughly as fast as a single reflip
attempt at the original hammer count of 100% (round 0). Speed
is important, as the attacker must run the algorithm live, i.e.,
during the attack. This is necessary because the number of
extraneous bit flips and the minimal hammer count required
to trigger the exploitable bit flips will vary between different
instances of the same attack.

Conclusion. The results in Figure 4 show that Softhammer

4



0 1 0 10 1 1 00

Victim memoryAttacker memory

Target object partially inaccessible

Partial
access 0 1 1 1 0 0 10

Target object fully inaccessible

Indirect

1

Syscall, libcall, ...

0 1 0 10 1 1 00

0 1 1 1 0 0 10 1

Figure 5. Partial versus indirect access. The arrows leaving the at-
tackers represent probes (e.g. a memory access, a system call, a library
call) that enable the attacker to determine whether the exploitable bit
flip (in green) has flipped.

is able to hide virtually all extraneous bit flips before the at-
tacker starts memory massaging. While this greatly improves
the attacker’s chances of success, Figure 3 showed how even
a single unwanted bit flip might easily sabotage the attack.
For this reason, we will now explain how the attacker may
safely discover any remaining bit flips so as to steer clear of
dangerously corrupted objects.

6. Dodging remaining bit flips

At this point, the templating and massaging phases are over.
The attacker has just finished spraying (i.e., allocating many)
target objects in order to stimulate reuse of the exploitable bits.
The next step is to take advantage of them.

Assumptions. Depending on the specifics of the exploit, the
attacker may not have access to the target objects. We distin-
guish between two cases, as shown in Figure 5:

1. Partial access: the attacker is able to probe the target
object and can write to reused memory—allowing them
to replace the target object, not to modify it. Examples:
sandbox escape [1, 7–9].

2. Indirect access: the attacker is able to probe the target
object but cannot write to reused memory. Example:
PTE exploit [1, 15, 21].

First, note that in any case, the attacker does not have full write
access to the target object: after all, the point of the attack
is to effectively gain write access through the Rowhammer
effect. What is meant by probing is the ability to—directly or
indirectly—read the target object and decide whether it has
been exploited successfully. The difference between partial
and indirect access is that in the first case (partial access), the
attacker reobtains the memory they used while templating
while in the second case (indirect access) the goal is rather to
pass vulnerable memory to the victim.

Dodging under partial access: priming. Partial access en-
ables the attacker to replace the target object with something
that is always safe to access. Before, the attacker would popu-
late the vulnerable memory region directly with target objects
and risk faulting later. With priming, they instead fill it with
benign objects that are hard to (dangerously) corrupt, such
as floating point numbers. Because floats will merely change
their value upon corruption, they enable the attacker to safely
rediscover the location of the exploitable bit flips. Aware of

000000ca3c0649e0 0000560f21c492b0 00000eecb3bc68a8 0000000a00000001 0000000a0000000a

fff8 616d476424090 fff8 616d476424090 fff8 616d476424090 fff8 616d476424090 

Array header

Array elements Target bits (9.0%)

Innocent bits (33.3%)

Dangerous bits (57.7%)

Figure 6. The memory layout of a 4-element JavaScript Array.
The colors indicate whether a bit, upon flipping, is either innocent
(gray), dangerous (red), or exploitable (green) when accessed after.
The header stores, among other fields, the array’s length, a pointer
to its data, and additional pointers to support object-oriented seman-
tics [38].

their location, the attacker knows exactly which floats to re-
place by target objects and replaces just those. To conclude the
attack, the attacker reflips once more, checks the target objects
at those locations that were found vulnerable during the priming
phase, and either succeeds or retries.
Dodging under indirect access: speculative execution.
Dodging under indirect access is more difficult because the
attacker can only probe the target object, see Figure 5. De-
pending on the exploit, the attacker may have the following
options: first, in addition to “standard probing”, the attacker
could build a stealth probe whose sole purpose is to safely scan
target objects. Speculative execution is particularly well-suited
for this purpose [10]: by speculatively accessing a dangerously
corrupted pointer, the page fault is supressed. However, it
also necessitates a cache probe, such as Flush+Reload [37], to
recover the scan result from the caches, which complicates
the attack, especially when launched from the browser. An
orthogonal approach would be to fork the attacker’s process
pre-massaging and have each process probe only a single tar-
get object post-massaging. While this will not prevent child
processes from crashing, it will protect the attacker against
premature termination.

7. Case study: type flipping in Posthammer
We conclude by applying our solutions to the Posthammer [8]
browser exploit. All experiments were integrated in the real
exploit, whose source code is publicly available.1 For the evalu-
ation below, we used the same 32 GB Samsung DIMM (DDR4)
as in Section 5.
Overview. The victim visits a malicious website that runs an
attacker-controlled client-side JavaScript. The attacker’s goal
is to obtain an arbitrary read-write primitive in the browser’s
renderer process and escape the JavaScript sandbox. The victim
is assumed to use a desktop PC equipped with a vulnerable
DDR4 DIMM (64.4 % of DIMMs are vulnerable [8]).
Target object. The target object is a reference to a JavaScript
ArrayBuffer. After releasing all vulnerable memory identified
during templating, the attacker stimulates reuse by copying
the target object over 100 million times. More specifically, the
attacker fills about 10 million ordinary JavaScript arrays (of
type Array) with 10 references each. Figure 6 shows what one
such array looks like (with 4 instead of 10 target objects). The

1See https://github.com/comsec-group/posthammer.

5

https://github.com/comsec-group/posthammer


memory layout of the array is crucial: it is where the attacker’s
bit flips will cause corruptions.
Memory layout. Figure 6 shows both the array’s header and
elements. We found that the elements are often located right
after the header. This means the vulnerable memory released
by the attacker is likely to contain headers and elements in
alternating fashion. Every bit is classified as specified in Sec-
tion 3. This information was obtained by manually flipping
every bit (through /dev/mem) before accessing the object. Note
the high percentage (57.7 %) of dangerous bits in the 4-element
array of the figure. For the 10-element array used in the real
attack this percentage is even higher at 66.5 %.
Original success rate. For the attack to fail, the attacker needs
to encounter a dangerously corrupted target object before one
that has been exploited correctly (recall Figure 3). Assuming
20 extraneous bit flips (see Figure 4), this means the attack’s
original success rate is about 5 % or 1/21—the likelihood of
encountering the sole exploitable bit flip first. However, this
assumes bit flips in array elements only, a significant simplifi-
cation that favors the attacker: dangerous corruptions in the
array header corrupt the entire array and will cause a page
fault whenever any of its elements is accessed.
Success rate with Softhammer. Softhammer reduces the
number of extraneous bit flips by 87.2 % on average (35 runs).
This enables the attacker to (somewhat) safely prime the arrays
with floating pointer numbers of which only 1/64 bits instead
of 51/64 are dangerous. Given 10-element arrays, this means
not 66.5 % but only 14.4 % of all bits are dangerous. As a result,
the attacker successfully rediscovers their exploitable bit flips
in 73.3 % of cases. Finally, sometimes (20.0 %) the attacker
is unable to retrigger the exploitable bit flips, either because
of the lack of reuse, or because of a too low hammer count,
causing a timeout. In total, without Softhammer, the exploit
faulted 100/120 times (83.3 %) (massaging failed in the other
20 cases), while with Softhammer, it crashed only 6/15 times
(40 %), reducing the failure rate by 43.3 percentage points and,
most importantly, making the attack succeed 40 % of the time.

8. Discussion
We discuss two ways to completely avoid the issue of extrane-
ous bit flips—each with distinct limitations—and the seemingly
contradictory findings reported in prior work [12].
Longer templating. One approach, rather than attempting
to minimize extraneous bit flips, is for the attacker to continue
templating until finding a pattern that exclusively triggers ex-
ploitable bit flips. This is feasible, but significantly prolongs the
templating phase. Worse still, it fails to account for extraneous
bit flips that may emerge after memory massaging.
Safety check. In certain contexts, performing a consistency
check (safety check) of the target object before accessing it
may be viable. Returning to Section 7, the attacker could check
the array’s type—ensuring it is still Array—before accessing its
contents. While this did not prevent the JavaScript engine from
faulting in our case, it may in others. Specifically, if the type

check is designed to avoid dereferencing any header pointers,
returning false (not an array) immediately when corruption
is detected, the attacker can skip reducing the hammer count
and immediately move to the still-necessary priming phase.
Effectiveness of mirroring alone. Interestingly, previous
work [12] reported that mirroring alone was sufficient to pre-
vent a bit from flipping, in contrast to our findings in Section 5.
Possible explanations include (i) the older DRAM technology
used in ECCploit [12], namely DDR3, whereas we used DDR4,
and more generally (ii) the varying effectiveness of mirroring
across different devices.

9. Conclusion
We introduced Softhammer, a combination of techniques that
allow for reliable Rowhammer exploitation. In particular, Soft-
hammer relies on soft hammering to minimize the number of
unwanted bit flips that hinder successful exploitation. In com-
bination with the known mirroring technique, soft hammering
enables the construction of more reliable Rowhammer exploits.
We showcased this by reducing the number of unwanted bit
flips in a recent JavaScript exploit by 87.2 %.

References
[1] M. Seaborn and T. Dullien, “Project Zero: Exploiting the DRAM Rowhammer Bug

to Gain Kernel Privileges,” 2015. [Online]. Available: https://googleprojectzero.
blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

[2] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote Software-
Induced Fault Attack in JavaScript,” in DIMVA ’16. [Online]. Available: https:
//doi.org/10.1007/978-3-319-40667-1_15

[3] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector,” in IEEE S&P ’16. [Online].
Available: http://ieeexplore.ieee.org/document/7546546/

[4] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip Feng
Shui: Hammering a Needle in the Software Stack,” in USENIX Sec. ’16. [Online].
Available: https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_
paper_razavi.pdf

[5] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms,” in CCS ’16. [Online]. Available:
https://dl.acm.org/doi/10.1145/2976749.2978406

[6] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and K. Razavi,
“Throwhammer: Rowhammer Attacks over the Network and Defenses,” in USENIX
ATC ’18. [Online]. Available: https://www.usenix.org/system/files/conference/atc18/
atc18-tatar.pdf

[7] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit: Accelerating
Microarchitectural Attacks with the GPU,” in IEEE S&P ’18. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8418604

[8] F. de Ridder, P. Jattke, and K. Razavi, “Posthammer: Pervasive Browser-Based
Rowhammer Attacks with Postponed Refresh Commands,” in USENIX Sec. ’25.
[Online]. Available: https://comsec.ethz.ch/posthammer

[9] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi, “SMASH:
Synchronized Many-sided Rowhammer Attacks From JavaScript,” in USENIX
Sec. ’21. [Online]. Available: https://www.usenix.org/conference/usenixsecurity21/
presentation/ridder

[10] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu, M. Nissler, and
D. Gruss, “Half-Double: Hammering From the Next Row Over,” in USENIX Sec. ’22.
[Online]. Available: https://www.usenix.org/system/files/sec22-kogler-half-double.
pdf

[11] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading Bits
in Memory Without Accessing Them,” in IEEE S&P ’20. [Online]. Available:
https://ieeexplore.ieee.org/document/9152687/

[12] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting Codes: On
the Effectiveness of ECC Memory Against Rowhammer Attacks,” in IEEE S&P ’19.
[Online]. Available: https://ieeexplore.ieee.org/document/8835222/

[13] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “Go Go Gadget Hammer:
Flipping Nested Pointers for Arbitrary Data Leakage,” in USENIX Sec. ’24. [Online].
Available: https://www.usenix.org/system/files/usenixsecurity24-tobah.pdf

[14] M. Bölcskei, P. Jattke, J. Wikner, and K. Razavi, “Rubicon: Precise Microarchitectural
Attacks with Page-Granular Massaging,” in EuroS&P ’25. [Online]. Available:
https://comsec.ethz.ch/wp-content/files/rubicon_eurosp25.pdf

[15] P. Jattke, M. Wipfli, F. Solt, M. Marazzi, M. Bölcskei, and K. Razavi, “ZenHammer:

6

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
http://ieeexplore.ieee.org/document/7546546/
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_razavi.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_razavi.pdf
https://dl.acm.org/doi/10.1145/2976749.2978406
https://www.usenix.org/system/files/conference/atc18/atc18-tatar.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-tatar.pdf
https://ieeexplore.ieee.org/abstract/document/8418604
https://comsec.ethz.ch/posthammer
https://www.usenix.org/conference/usenixsecurity21/presentation/ridder
https://www.usenix.org/conference/usenixsecurity21/presentation/ridder
https://www.usenix.org/system/files/sec22-kogler-half-double.pdf
https://www.usenix.org/system/files/sec22-kogler-half-double.pdf
https://ieeexplore.ieee.org/document/9152687/
https://ieeexplore.ieee.org/document/8835222/
https://www.usenix.org/system/files/usenixsecurity24-tobah.pdf
https://comsec.ethz.ch/wp-content/files/rubicon_eurosp25.pdf


Rowhammer Attacks on AMD Zen-based Platforms,” in USENIX Sec. ’24. [Online].
Available: https://www.usenix.org/system/files/sec24fall-prepub-1050-jattke.pdf

[16] S. Ji, Y. Ko, S. Oh, and J. Kim, “Pinpoint Rowhammer: Suppressing Unwanted
Bit Flips on Rowhammer Attacks,” in ACM Asia CCS ’19. [Online]. Available:
https://dl.acm.org/doi/10.1145/3321705.3329811

[17] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” in ISCA ’14. [Online]. Available:
http://ieeexplore.ieee.org/document/6853210/

[18] P. Frigo, E. Vannacc, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida, H. Bos, and
K. Razavi, “TRRespass: Exploiting the Many Sides of Target Row Refresh,” in IEEE
S&P ’20. [Online]. Available: https://download.vusec.net/papers/trrespass_sp20.pdf

[19] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “BLACKSMITH:
Scalable Rowhammering in the Frequency Domain,” in IEEE S&P ’22. [Online].
Available: https://doi.org/10.1109/SP46214.2022.9833772

[20] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice, and D. Gruss,
“Nethammer: Inducing Rowhammer Faults through Network Requests,” in
EuroS&PW ’20. [Online]. Available: https://ieeexplore.ieee.org/document/9229701

[21] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “PThammer:
Cross-User-Kernel-Boundary Rowhammer through Implicit Accesses,” inMICRO ’20.
[Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9251982

[22] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl,
and Y. Yarom, “Another Flip in the Wall of Rowhammer Defenses,” in IEEE S&P ’18.
[Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8418607

[23] S. Bhattacharya and D. Mukhopadhyay, “Curious Case of Rowhammer: Flipping
Secret Exponent Bits Using Timing Analysis,” in CHES ’16. [Online]. Available:
https://eprint.iacr.org/2016/618.pdf

[24] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the Processor via
Rowhammer Attack,” in Workshop on System Software for Trusted Execution ’17.
[Online]. Available: https://dl.acm.org/doi/10.1145/3152701.3152709

[25] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal: Advanced Model
Extractions Leveraging Efficient Weight Stealing in Memories,” in IEEE S&P ’22.
[Online]. Available: https://ieeexplore.ieee.org/document/9833743/

[26] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHammer: Combining
Spectre and Rowhammer for New Speculative Attacks,” in IEEE S&P ’22. [Online].
Available: https://ieeexplore.ieee.org/document/9833802/

[27] Y. Cohen, K. S. Tharayil, A. Haenel, D. Genkin, A. D. Keromytis, Y. Oren, and Y. Yarom,
“HammerScope: Observing DRAM Power Consumption Using Rowhammer,” in CCS
’22. [Online]. Available: https://dl.acm.org/doi/10.1145/3548606.3560688

[28] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One Cloud
Flops: Cross-VM Rowhammer Attacks and Privilege Escalation,” in USENIX
Sec. ’16. [Online]. Available: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/xiao

[29] M. Fahr Jr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger, D. Dachman-Soled,
D. Genkin, A. Nelson, R. Perlner, A. Yerukhimovich et al., “When Frodo Flips:
End-to-End Key Recovery on FrodoKEM via Rowhammer,” in ACM CCS ’22.
[Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3548606.3560673

[30] H. Venugopalan, K. Goswami, Z. A. Din, J. Lowe-Power, S. T. King, and
Z. Shafiq, “Centauri: Practical Rowhammer Fingerprinting.” [Online]. Available:
http://arxiv.org/abs/2307.00143

[31] L. Gerlach, F. Thomas, R. Pietsch, and M. Schwarz, “A Rowhammer Reproduction
Study Using the Blacksmith Fuzzer,” in ESORICS ’23. [Online]. Available:
https://doi.org/10.1007/978-3-031-51479-1_4

[32] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software Mitigations against
Rowhammer: A Surgical Precision Hammer,” in RAID ’18. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-00470-5_3

[33] J. S. Kim, M. Patel, A. G. Yaglikci, H. Hassan, R. Azizi, L. Orosa, and
O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of Modern
DRAM Devices and Mitigation Techniques,” in ISCA ’20. [Online]. Available:
https://ieeexplore.ieee.org/document/9138944/

[34] K. Mus, S. Islam, and B. Sunar, “QuantumHammer: A Practical Hybrid
Attack on the LUOV Signature Scheme,” in CCS ’20. [Online]. Available:
https://dl.acm.org/doi/10.1145/3372297.3417272

[35] H. Nam, S. Baek, M. Wi, M. J. Kim, J. Park, C. Song, N. S. Kim,
and J. H. Ahn, “DRAMScope: Uncovering DRAM Microarchitecture and
Characteristics by Issuing Memory Commands,” in ISCA ’24. [Online]. Available:
https://doi.org/10.1109/ISCA59077.2024.00083

[36] W. He, Z. Zhang, Y. Cheng, W. Wang, W. Song, Y. Gao, Q. Zhang,
K. Li, D. Liu, and S. Nepal, “WhistleBlower: A System-level Empirical
Study on RowHammer,” IEEE Trans. Comput. ’23. [Online]. Available: https:
//ieeexplore.ieee.org/document/10014649/

[37] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack,” in USENIX Sec. ’14.

[38] argp, “OR’LYEH? The Shadow over Firefox,” in Phrack Mag. ’16. [Online]. Available:
https://phrack.org/issues/69/14

7

https://www.usenix.org/system/files/sec24fall-prepub-1050-jattke.pdf
https://dl.acm.org/doi/10.1145/3321705.3329811
http://ieeexplore.ieee.org/document/6853210/
https://download.vusec.net/papers/trrespass_sp20.pdf
https://doi.org/10.1109/SP46214.2022.9833772
https://ieeexplore.ieee.org/document/9229701
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9251982
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8418607
https://eprint.iacr.org/2016/618.pdf
https://dl.acm.org/doi/10.1145/3152701.3152709
https://ieeexplore.ieee.org/document/9833743/
https://ieeexplore.ieee.org/document/9833802/
https://dl.acm.org/doi/10.1145/3548606.3560688
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://dl.acm.org/doi/pdf/10.1145/3548606.3560673
http://arxiv.org/abs/2307.00143
https://doi.org/10.1007/978-3-031-51479-1_4
https://link.springer.com/chapter/10.1007/978-3-030-00470-5_3
https://ieeexplore.ieee.org/document/9138944/
https://dl.acm.org/doi/10.1145/3372297.3417272
https://doi.org/10.1109/ISCA59077.2024.00083
https://ieeexplore.ieee.org/document/10014649/
https://ieeexplore.ieee.org/document/10014649/
https://phrack.org/issues/69/14

	Introduction
	Background
	Rowhammer
	Memory massaging
	Reflipping

	Threat model
	Challenges
	Avoiding unnecessary bit flips
	Mirroring
	Hammering less

	Dodging remaining bit flips
	Case study: type flipping in Posthammer
	Discussion
	Conclusion

