
Moinuddin Qureshi
(moin@gatech.edu)

Moving the Needle in Rowhammer 
Defense with a Minimalist Approach 

Keynote, DRAMSec-2025



Painting vs. Sculpture?

A painting is complete when nothing more needs to be added

A sculpture is complete when nothing more can be removed



The Rowhammer Saga

DRAM Scaling for Increased Capacity 

More Inter-Cell Interference

DRAM

(old)

DRAM

(new)



Rowhammer Attacks

Bit-Flips in Neighboring Rows 

Row

Row

Row

Row of Cells (8KB)

Victim Row

Aggressor Row

Aggressor Row

DRAM

Rowhammer Attack

Rapid

Accesses

DRAM Scaling for Increased Capacity 

More Inter-Cell Interference

DRAM

(old)

DRAM

(new)



Rowhammer Attacks

Bit-Flips in Neighboring Rows 

Row

Row

Row

Row of Cells (8KB)

Victim Row

Aggressor Row

Aggressor Row

DRAM

Rowhammer Attack

Rapid

Accesses

loop:

  mov (X), %eax

  mov (Y), %ebx

  clflush (X)

  clflush (Y)

  mfence

  jmp loop

Software Adversary Can Flip Bits in Page Tables & 

Gain Kernel Privileges (Take Over a System)

[Seaborn+, Blackhat’15]



Rowhammer is Getting Worse!

Rowhammer Threshold: TRH-S (Single Sided) and TRH-D (Double-Sided)

Solutions must tolerate not only current TRH but future TRH

30x Reduction in 

TRH in 8 years!



Typical Mitigation for Rowhammer 

Track Aggressor Rows1 Mitigative Action2

Victim Row

Aggressor Row

Victim Row

DRAM

Refresh

Tracking can be done at Memory Controller (MC) or In-DRAM

(In-DRAM mitigation can solve DRAM problem within DRAM)



What is In-DRAM Mitigation?

Track Aggressor Rows1 Mitigative Action2

Victim Row

Aggressor Row

Victim Row

DRAM

Refresh

In-DRAM Mitigation needs Space (Tracking) and Time (Victim Refresh)

DDR4: 4-16 Entries Borrow Time from REF



What About the In-DRAM Tracker?

Optimal trackers incur high SRAM overheads. Low-Cost Trackers Secure? 

Optimal Trackers

ProTRR, Mithril

(100-1000s entries)

Low-Cost Tracker

4-20 entries

(TRR, DSAC, PAT)



Track Aggressor Rows1 Mitigative Action2

Victim Row

Aggressor Row

Victim Row

DRAM

Refresh

TRResspass Breaks TRR Tracker [Frigo+, SP’20]

Source: The Hacker News

Blacksmith Attack: All DDR4 DRAM Vulnerable [Jattke+, SP’22]

Source: The Register

Low-Cost In-DRAM Trackers Broken!

Targeted Row Refresh (TRR) in DDR4 (2015)

DRAM Industry: Our TRR was broken, so ALL low-cost TRR will be broken



DRAM Industry: Throw the Baby Out with the Bathwater

TRR

Right question: How do we design a low-cost TRR that is provably secure?



Outline

• The Rowhammer Saga

• MINT: Minimalist Randomized Tracker

• MOAT: Secure Mitigation with PRAC

• MoPAC: Reducing the Slowdown of PRAC

• Parting Thoughts
MICRO-2024



Why In-DRAM Trackers Fail?

In-DRAM Tracker

(Counters)

Insertion 

Policy

Eviction Policy

Mitigation 

Policy

In-DRAM Trackers characterized as having N entries and managed by 3 policies

Three sources of failures:

1. Insertion Failure (target address not get inserted in tracker within TRH)

2. Retention Failure (the address was inserted but got evicted without mitigation)

3. Tardiness (more activations between insertion and mitigation breaching TRH) 

Build trackers such that it is easy to reason about the worst-case 

patterns and the resulting tolerated threshold



The Problem of Non-Uniform Mitigation

The non-uniform mitigation means attacker can focus on most vulnerable position

Observation: In-DRAM PARA (IID Tracking) has non-uniform mitigation



MINT: Minimalist In-DRAM Tracker

MINT requires low hardware overhead (about 4 bytes)

R

E

F

R

E

F

Window (can perform up to 73 ACT)

Which Row to Mitigate?

X = URAND (0,72) … LFSR SAN=2

CAN=0 CAN=1 CAN=2 CAN=3

SAR

SAN: Selected Activation Num

CAN: Current Activation Num

SAR: Sampled Address Reg



Deriving Worst-Case Pattern

What if we keep have 73 attack lines in the tREFI window? Failure probability becomes 73x

ABCDEF

MINT has a TRH of 2800, TRH-D of 1400 (25% lower than PrIDE)

Outperforming 700-entry tracker with a single-entry!

ABCDEF ABCDEF ABCDEF



Refresh Postponement Attacks

Refresh postponement breaks low-cost trackers

Severity: Attacker can cause 478K unmitigated ACTs on a row!

(easy to tolerate with counter-based optimal trackers) 



Delayed Mitigation Queue (DMQ)

MINT+DMQ can tolerate a TRHD of 1482 (under Adaptive Attacks)

(within 2x of an idealized per-row tracker)

Simple Solution to Refresh Postponement Attacks

MINT+DMQ: 1 Mitig per tREFI

TRH-D: 1480, Slowdown=0%

MINT+DMQ+RFM16

TRH-D: 356, Slowdown=1.6%



Row-Press: New Data-Disturbance Error

After ACT, neighbor row continue to leak charge on the bit line

Row-Press: Keep the row open for a long time! 

Row-Press cause bitflips with fewer ACTs, breaks all RH trackers

[Luo, Mutlu, et al. ISCA-2023]



Insight
Tolerate Row-Press without affecting tolerated threshold

No artificial limit on tON (applicable to in-DRAM trackers)

Only minor impact on storage and performance overheads

MICRO-2024



Tolerating Row-Press with MINT?

MINT+ImPress defends both RH and RP at ultra-low cost!

Instead of incrementing CAN by 1 on ACT, increment by EACT

Select Row if CAN crosses SAN 

R

E

F

R

E

F

Window (can perform up to 73 ACT)

Which Row to Mitigate?

X = URAND (0,72) … LFSR SAN=2

CAN=0 CAN=1.5 CAN=2.8 CAN=4

SAR

SAN: Selected Activation Num

CAN: Current Activation Num

SAR: Sampled Address Reg



Outline

• The Rowhammer Saga

• MINT: Minimalist Randomized Tracker

• MOAT: Secure Mitigation with PRAC

• MoPAC: Reducing the Slowdown of PRAC

• Parting Thoughts
ASPLOS-25



JEDEC Introduces PRAC+ABO

PRAC+ABO is a principled defense against RH (big changes to DRAM)

JEDEC: low-cost trackers broken, so let’s go for per-row tracking (space) and ABO (time)

PRAC: Per-Row-Activation-Counting, solves the space issue 

ABO: Alert Back-off, solves the time issue



Panopticon Design

Panopticon: seminal work & inspiration behind PRAC and ABO

PRAC is a framework, does not specify implementation details, security depends on design

Typically, some SRAM needed to track which row(s) will get mitigated

(8 entry queue per-bank)

One aggressor-row 

mitigated every Nth REF

Trigger ALERT 

if queue is full

Insert row in queue 

if threshold bit flips



Exploiting Tardiness for Attack

Jailbreak inflicts 1150 ACTs on a row for design with threshold of 128

E.g. Design does not track activations while the row is buffered in the queue

We can attack this design by filling the queue, and hammering the youngest row



MOAT: Minimalist Provably Secure Design
Insight: Greedily track a single entry per bank (minimalist design, low SRAM cost)

ATH: ALERT Threshold determines TRH

Row Addr Ctr

CTA: Currently Tracked Addr

PRAC.Ctr 

> CTA.Ctr?

On Access Yes Overwrite 

CTA

On ALERT/Mitigative REF: mitigate CTA

On Access: if CTA.Ctr > ATH, trigger ALERT

MOAT is the first provably secure implementation for PRAC+ABO



MOAT Overheads (norm. to PRAC)

MOAT with ATH = 128+ incurs virtually zero ALERTs

The mitigation (ALERTs) from MOAT cause negligible performance overheads 



Outline

• The Rowhammer Saga

• MINT: Minimalist Randomized Tracker

• MOAT: Secure Mitigation with PRAC

• MoPAC: Reducing the Slowdown of PRAC

• Parting Thoughts

ISCA-2025



The Problem with PRAC

For row conflict, service time increases from 40ns to 62ns (1.5x)

For closed-page systems, tRC increase still significant (13%)

Two sources of slowdown: Intrinsic (inflated timing) + extrinsic (ABO related stalls)

PRAC suffers from high slowdown because of increased tRP/tRC (average 10% slowdown)



The Problem with PRAC

Note: some prior studies showed 1% bus BW impact (BW != IPC)

The high tRP and tRC causes significant slowdown (consistent with other studies)

If PRAC related slowdown is high, will the industry adopt PRAC?



Insight: Are all counter updates necessary? 

MOPAC uses REF for ctr updates (triggers ABO if buffer fills up)

Instead of incrementing PRAC counter on each activation, update probabilistically

Revise ATH to account for sampling rate and sampling inefficiency



Performance Overhead with MoPAC

MoPAC reduces the PRAC slowdown from 10% to 0.1%-2.2%

Unlike PRAC, MoPAC performance overhead depends on threshold



Outline

• The Rowhammer Saga

• MINT: Minimalist Randomized Tracker

• MOAT: Secure Mitigation with PRAC

• MoPAC: Reducing the Slowdown of PRAC

• DREAM: MC-Side Mitigations with DRFM

• Parting Thoughts
ISCA-2025



MC-Side Rowhammer Mitigation

MC-based RH mitigation enables SOC vendors to ensure security 

Memory 

Controller

ACT
Mitigate

TRHD p

500 1/25

1000 1/50

2000 1/100

Avoid obscure/proprietary DRAM TRR

Avoid slowdown of PRAC

Avoid reliance on REF cannibalization

Ensure security at low-cost in SOC

Why?



DRFM: DDR5 Support for Mitigation

DRFM stalls 8-32 banks for each mitigation, performance impact?



Slowdown from PARA with DRFM

Replacing NRR with DRFM causes significant slowdowns!



Insight: Delay Issuing DRFM

Delaying gives other banks chance to sample into DAR

Delay until the next the next 

sampled row to the same bank

BANK 1

Pre+S

BANK 2

Pre+S

BANK 3

Pre+S

BANK 1

BANK 2

BANK 3

Concurrent

Mitigation

How long should we delay?



DRFM Aware Mitigation (DREAM)

MC-Side mitigation are quite useful (vs PRAC) for SOC vendors

DREAM has much lower slowdown 

than PRAC at current TRH



Outline

• The Rowhammer Saga

• MINT: Minimalist Randomized Tracker

• MOAT: Secure Mitigation with PRAC

• MoPAC: Reducing the Slowdown of PRAC

• DREAM: MC-Side Mitigations with DRFM

• Parting Thoughts



Painting vs. Sculpture



Conclusion

Even after a decade, DRAM industry is unable to solve Rowhammer

• Don’t throw TRR away – it is the lowest cost solution.  Make it secure.

• PRAC still needs to be carefully architected to ensure security 

• PRAC has high slowdown, need to reduce it for practical adoption

• SOC vendors can take matters in their hand with DRFM, still useful for DDR6

Minimalism is key to ensuring security!

Performance matters: Everyone wants security, no one wants to pay


