
Bio:

Kuljit is a Sr. Distinguished Engineer at Nvidia working on memory sub-systems. Prior to
joining Nvidia, he was a Fellow at Intel. Over the past couple of decades, he has overseen
the design and specifications of many types of DRAMs including DDR3, DDR4, DDR5,
LPDDR4, LPDDR5, LPDDR6, HBM3, and HBM4. His deep knowledge of DRAM architecture
and memory sub-systems has made Kuljit influence DRAM standards across server, client,
accelerator, and graphics market segments. Over his career, Kuljit has authored over 200
patents, some of which put forward the earliest ideas on how to improve DRAM security
going as far back as 2012.

"Is PRAC a good solution to DRAM read disturbance? Are we missing anything? Can we
(and should we) do much better (and hopefully not worse)?"

PRAC is major step forward to address bit flips due as a result of row hammer attack on
DRAM. It is going to be an industry standard going forward with LPDDR6 and DDR6.

Some of the early work included adding a counter per wordline back in 2013 and recall
filing a patent on it. Idea was rejected by memory vendors and now we have come a full
circle by adding a counter per wordline with PRAC.

DRAM vendors added diVerent options to address row hammer that were easily overcome.
Some of the latest implementations such as DDR5 are more robust though but still not row
hammer free.

We believe PRAC is a good solution but will create other attacks such as ‘denial-of-service’
or ‘side channels’ that need to be addressed

PRAC is essentially a framework for vendors to implement row hammer mitigation. A lot of
papers assume a certain implementation and create attack vectors.

Some of the proposals also underestimate the die size impact for alternate
implementations to PRAC. DRAM industry is very sensitive to cost overhead.

PRAC comes with minimal die size overhead. I believe that performance overhead of say
10% is a bit overstated in a lot of publications. Write row cycle times are not increased.
Read row cycle goes up by ~20ns and there can be controller implementation to optimize
around it. Future JEDEC spec will also try to address performance concerns.

If we have 2-3% perf overhead, then we can position it as a one-time tax of addressing row
hammer. This is a tradeoV that industry is willing to make for security.

We can definitely improve on PRAC so all new ideas are welcome to make it more robust.

