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We present the first rigorous security, performance, energy,
and cost analyses of the state-of-the-art on-DRAM-die read
disturbance mitigation method, widely known as Per Row Acti-
vation Counting (PRAC), with respect to its description in the
updated (as of April 2024) JEDEC DDR5 specification. Unlike
prior state-of-the-art that advises the memory controller to pe-
riodically issue a DRAM command called refresh management
(RFM), which provides the DRAM chip with time to perform
its countermeasures, PRAC introduces a new back-off signal.
PRAC’s back-off signal propagates from the DRAM chip to the
memory controller and forces the memory controller to 1) stop
serving requests and 2) issue RFM commands. As a result,
RFM commands are issued only when needed as opposed to
periodically, reducing the performance overhead of RFM. We
analyze PRAC in four steps. First, we define a security-oriented
adversarial access pattern that represents the worst-case for
the security of PRAC. Second, we investigate PRAC’s different
configurations and their security implications. Our security
analyses show that PRAC can be configured for secure oper-
ation as long as no bitflip occurs before accessing a memory
location 10 times. Third, we evaluate the performance im-
pact of PRAC and compare it against prior works using an
open-source cycle-level simulator, Ramulator 2.0. Our per-
formance analysis shows that while PRAC incurs less than
13.4% performance overhead on benign applications for to-
day’s DRAM chips, its performance overheads can reach up
to 63.2% (48.5% on average across 60 workloads) for future
DRAM chips that are more vulnerable to read disturbance bit-
flips. Fourth, we define an availability-oriented adversarial ac-
cess pattern that exacerbates PRAC’s performance overhead to
perform a memory performance attack, demonstrating that such
an adversarial pattern can hog up to 79% of DRAM through-
put and degrade system throughput by up to 65% (53% on
average). We discuss PRAC’s implications on future systems
and foreshadow future research directions. To aid future re-
search, we open-source our implementations and scripts at
https://github.com/CMU-SAFARI/ramulator2.

1. Introduction
To ensure system robustness (including reliability, security, and
safety), it is critical to maintain memory isolation: accessing a
memory address should not cause unintended side-effects on
data stored on other addresses [1]. Unfortunately, with aggres-
sive technology scaling, DRAM [2], the prevalent main memory
technology, suffers from increased read disturbance: accessing
(reading) a row of DRAM cells (i.e., a DRAM row) degrades the

data integrity of other physically close but unaccessed DRAM
rows. RowHammer [1] is a prime example of DRAM read dis-
turbance, where a DRAM row (i.e., victim row) can experience
bitflips when at least one nearby DRAM row (i.e., aggressor
row) is repeatedly activated (i.e., hammered) [1, 3–69] more
times than a threshold, called the minimum hammer count to
induce the first bitflip (NRH). RowPress [70] is another prime
example of DRAM read disturbance that amplifies the effect of
RowHammer and consequently reduces NRH .

A simple way of mitigating DRAM read disturbance is to
preventively refresh potential victim rows before bitflips occur.
Doing so comes at the cost of potential performance degrada-
tion [1, 36, 42, 71–91]. To provide DRAM chips with the neces-
sary flexibility to perform preventive refreshes in a timely man-
ner, recent DRAM standards (e.g., DDR5 [92, 93]) introduce
1) a command called refresh management (RFM) [92] and 2) a
mechanism called Per Row Activation Counting (PRAC) [93].
RFM is a DRAM command that provides the DRAM chip with a
time window (e.g., 195 ns [93]) to perform preventive refreshes.
Specifications before 2024 (e.g., DDR5 [92]) advise the mem-
ory controller to issue RFM when the number of row activations
in a bank or a logical memory region exceeds a threshold (e.g.,
32 [93]). A recent update as of April 2024 of the JEDEC DDR5
specification [93, 94] introduces a new on-DRAM-die read dis-
turbance mitigation mechanism called PRAC. PRAC has two
key features. First, PRAC maintains an activation counter per
DRAM row [1] to accurately identify when a preventive re-
fresh is needed. PRAC increments a DRAM row’s activation
counter while the row is being closed, which increases the la-
tency of closing a row, i.e., the precharge latency (tRP) and row
cycle time (tRC) timing parameters. Second, PRAC proposes
a new back-off signal to convey the need for preventive re-
freshes from the DRAM chip to the memory controller, similar
to what prior works propose [76, 85, 87, 95, 96]. The DRAM
chip asserts this back-off signal when a DRAM row’s activa-
tion count reaches a critical value. Within a predefined time
window (e.g., 180 ns [93]) after receiving the back-off signal,
the memory controller has to issue an RFM command so that
the DRAM chip can perform the necessary preventive refresh
operations. PRAC aims to 1) avoid read disturbance bitflips by
performing necessary preventive refreshes in a timely manner
and 2) minimize unnecessary preventive refreshes by accurately
tracking each row’s activation count. Unfortunately, no prior
work rigorously investigates the impact of PRAC on security,
performance, energy, and cost for modern and future systems.
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This paper performs the first rigorous analysis of PRAC in
four steps. First, we define a security-oriented adversarial ac-
cess pattern that achieves the highest possible activation count
in systems protected by PRAC. Second, we conduct a security
analysis by evaluating the highest possible activation count that
a DRAM row can reach under different configurations of PRAC.
Our analysis shows that PRAC can be configured for secure
operation against an NRH value of 10 or higher. Third, we
evaluate the impact of PRAC on performance and energy using
Ramulator 2.0 [97, 98], an open-source cycle-level simulator
extended with DRAMPower [99]. Our results across 60 differ-
ent four-core multiprogrammed benign workload mixes show
that PRAC incurs an average (maximum) 9.7% (13.4%) system
performance and 18.4% (23.0%) DRAM energy overheads for
modern DRAM chips with any of the NRH values of 10K [61],
4.8K [61], and 1K [70]. These overheads are similar across
the specified NRH values because they are mainly a result of
the increased critical DRAM access latencies (i.e., tRP and tRC).
PRAC’s average (maximum) overheads reach 11.2% (15.3%),
17.8% (24.5%), and 48.5% (63.2%) for performance and 20.2%
(26.1%), 29.3% (38.7%), and 117.2% (136.3%) for DRAM
energy on future DRAM chips with NRH values of 128, 64, and
16, respectively. We attribute these large overheads to many
preventive refresh operations being performed (even under be-
nign workloads) as NRH values decrease. We compare PRAC to
three state-of-the-art mitigation mechanisms: 1) Graphene [75],
2) Hydra [86], and 3) PARA [1]. Our results across 60 different
four-core multiprogrammed benign workloads show that PRAC
performs 1) better than PARA at NRH values lower than 1K and
2) comparably to Graphene and Hydra at NRH values lower than
256, as it performs preventive refreshes less aggressively, i.e.,
when a row activation counter gets close to NRH . Fourth, we
define an availability-oriented adversarial access pattern that
exacerbates the performance overhead of PRAC to perform a
memory performance attack and show that this adversarial ac-
cess pattern 1) hogs up to 79% of DRAM throughput and 2)
reduces system performance by up to 65.2% (53.4% on average)
across 60 workloads.

We make the following contributions:

• We present the first security analysis of PRAC and provide
robust PRAC configurations against its worst-case access
pattern.

• We rigorously evaluate the performance, energy, and cost
implications of PRAC’s different configurations for modern
and future DRAM chips. Our results show that PRAC incurs
non-negligible overheads, even for DRAM chips with NRH
values higher than 1K, because it increases critical DRAM
timing parameters.

• We compare PRAC to three state-of-the-art mitigation mecha-
nisms for modern and future DRAM chips. Our results show
that PRAC 1) underperforms against two of the three miti-
gation mechanisms for modern DRAM chips with relatively
high (i.e., ≥1K) NRH values and 2) performs comparably to
all three mitigation mechanisms for future DRAM chips with
lower NRH values, because it performs preventive refreshes

in a timely manner.
• We mathematically and empirically show that an attacker

can exploit PRAC’s preventive refreshes to mount memory
performance attacks [100–105] and hog a large fraction of
DRAM throughput, which in turn, significantly degrades
system performance.

• To aid future research in a transparent manner, we open-
source our implementations and scripts at https://github.
com/CMU-SAFARI/ramulator2.

2. Background & Motivation
Organization. A memory channel connects the processor
to a set of DRAM chips, called DRAM rank. Each chip has
multiple DRAM banks, in which DRAM cells are organized as
a two-dimensional array of rows and columns.
Operation. The memory controller serves memory access re-
quests with four main DRAM commands [92, 106–114]. First,
the memory controller issues an ACT command alongside the
bank address and row address corresponding to the memory
request’s address, which opens (activates) one DRAM row in
a DRAM bank. Second, the memory controller can read/write
data from/to an activated row using RD/WR commands. Third,
to access another row in an already activated DRAM bank, the
memory controller must issue a PRE command to close the
opened row and prepare the bank for a new activation. The
memory controller obeys many timing constraints to guarantee
correct operation [93, 112–114]. Three constraints on min-
imum delay between commands are 1) charge restoration la-
tency (tRAS), from an ACT command to the next PRE command;
2) tRP, from a PRE command to the next ACT command; and
3) tRC, between two ACT commands as the sum of tRAS and tRP.
Refresh. To maintain data integrity, a DRAM cell is periodi-
cally refreshed [115–117] with a time interval called the refresh
window (tREFW ), which is typically 64 ms (e.g., [110,111,118])
or 32 ms (e.g., [92, 106, 107]). The memory controller periodi-
cally issues a refresh (REF) command with a time interval called
the refresh interval (tREFI), typically 7.8 µs (e.g., [110,111,118])
or 3.9 µs (e.g., [92, 106, 107]). When a rank- or bank-level re-
fresh [117] is issued, the DRAM chip internally refreshes sev-
eral DRAM rows, during which the whole rank or bank is busy.
This operation’s latency is called the refresh latency (tRFC).
Read Disturbance. Read disturbance is the phenomenon that
reading data from a memory device causes electrical disturbance
on another piece of data that is not accessed but physically
located nearby the accessed data. Two prime examples of read
disturbance in modern DRAM chips are RowHammer [1] and
RowPress [70], where repeatedly activating (i.e., hammering) or
keeping active (i.e., pressing) a DRAM row induces bitflips in
physically nearby DRAM rows. In RowHammer and RowPress
terminology, a row that is hammered or pressed is called the
aggressor row, and the row that experiences bitflips the victim
row. For read disturbance bitflips to occur, 1) an aggressor
row needs to be activated more than a certain threshold value,
defined as NRH [1] and/or 2) the time that an aggressor row
stays active, i.e., aggressor row’s on-time (tAggOn) [70] needs to
be large-enough [70]. One way to avoid read disturbance is to
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identify potential aggressor rows and preventively refresh their
potential victim rows [1, 36, 42, 71–91].
PRAC. Various prior works discuss the use of per-row activa-
tion counters to detect how many times each row in DRAM
is activated within a refresh interval [1, 77, 85, 95, 119]. A
recent update (as of April 2024) of the JEDEC DDR5 specifi-
cation [93, 94] introduces a similar on-DRAM-die read distur-
bance mitigation mechanism called PRAC (explained in §3),
which aims to ensure robust operation at low overhead by pre-
ventively refreshing victim rows when necessary. Although
PRAC is a promising DRAM specification advancement, no
prior work rigorously analyzes PRAC’s impact on security, per-
formance, energy, and cost for modern and future systems.

3. A Brief Summary of RFM and PRAC
This section briefly explains the RFM command, PRAC mecha-
nism, and assumptions we use for our evaluations.
RFM Command. RFM is a DRAM command that provides
the DRAM chip with a time window (e.g., 195 ns [93]) so that
the DRAM chip preventively refreshes potential victim rows.
The DRAM chip is responsible for identifying and preventively
refreshing potential victim rows, and the memory controller is
responsible for issuing RFM commands.
PRAC Overview. PRAC implements an activation counter for
each DRAM row, and thus accurately measures the activation
counts of all rows. When a row’s activation count reaches
a threshold, the DRAM chip asserts a back-off signal which
forces the memory controller to issue an RFM command. The
DRAM chip preventively refreshes potential victim rows upon
receiving an RFM command.
Assumptions about the PRAC Mechanism. We make two
assumptions: 1) PRAC always refreshes potential victims of
the row with the maximum activation count during each RFM
command (even if the maximum activation count is not close to
NRH )1 and 2) physically-adjacent DRAM rows can experience
bitflips when a DRAM row is activated more than a threshold
value, denoted as NRH .
PRAC’s Operation and Parameters. PRAC increments the
activation count of a DRAM row while the row is being closed
(i.e., during precharge), which increases tRP and tRC [93]).2 The
DRAM chip asserts the back-off signal when a row’s activation
count reaches a fraction of NRH , denoted as the back-off thresh-
old (NBO), where the fraction can be configured to either 70%,
80%, 90%, or 100% [93]. The memory controller receives the
back-off signal between the time after a command that closes
rows (e.g., precharge or refresh) is issued and a small latency
after the same command’s completion (e.g., ≈5 ns [93]). The
memory controller and the DRAM chip go through three phases

1The specification does not enforce refreshing the victims of the aggressor
with the maximum activation count [93].

2When PRAC is enabled, activation counters are incremented with internal
reads and writes before a row is closed. The counter update causes a delay
between the time of receiving a precharge command and actually precharging
the row. Because of this delay, 1) tRP increases by 21 ns (+140%) and 2) tRAS,
tRT P, and tWR reduces by 16 ns (-50%), 2.5 ns (-33%), and 20 ns (-66%) [93].
Combined effect of these timing parameters result in a tRC increase of 5 ns
(+10%) (for DDR5-3200AN speed bin [93]).

when the back-off signal is asserted. First, during the window
of normal traffic (tABOACT ) [93], the memory controller has a
limited time window (e.g., 180 ns [93]) to serve requests after
receiving the back-off signal. A DRAM row can receive up
to tABOACT /tRC activations in this window. Second, during the
recovery period [93], the memory controller issues a number
of RFM commands, which we denote as NRe f (e.g., 1, 2 or
4 [93]). An RFM command can further increment the activation
count of a row before its potential victims are refreshed. Third,
during the delay period or the delay until a new back-off can be
initiated (tBackO f f Delay) [93], the DRAM chip cannot reassert
the back-off signal until it receives a number of activate (ACT)
commands, which we denote as NDelay (e.g., 1, 2 or 4 [93]).3

Considering these three phases, §5 calculates the highest achiev-
able activation count to any DRAM row in a PRAC-protected
system.
RFM and PRAC Implementations. We analyze four different
RFM and PRAC implementations: 1) Periodic RFM (PRFM),
where the memory controller issues an RFM command periodi-
cally when the total number of activations to a bank reaches a
predefined threshold value called bank activation threshold to
issue an RFM command (RFMth) with no back-off signal from
the DRAM chip, as described in early DDR5 standards [92];
2) PRAC-N, where the memory controller issues N back-to-
back RFM commands only after receiving a back-off signal
from the DRAM chip, as described in the latest JEDEC DDR5
standard [93, 94]; 3) PRAC+PRFM, where the memory con-
troller issues an RFM command i) when the total number of
activations to a bank reaches RFMth or ii) it receives a back-off
signal from the DRAM chip. PRAC-N implementations are
not secure at NRH values lower than 10. Therefore, combin-
ing PRAC and PRFM enables security at lower NRH values at
the cost of potentially refreshing the victims of aggressor rows
whose activation counts are not close to NRH ; and 4) PRAC-
Optimistic, which is the same as the default PRAC configuration
advised by JEDEC [93] (i.e., PRAC-4) without any change in
timing parameters (including tRP and tRC [93]).

4. Adversarial Access Pattern: The Wave Attack
Threat Model. To account for the worst case, we assume
that the attacker 1) knows the physical layout of DRAM rows
(as in [120]), 2) accurately detects when a row is internally
refreshed (preventively or periodically as in U-TRR [42]), and
3) precisely times all DRAM commands except REF and RFM
commands (as in [42, 120]).
Overview. The adversarial access pattern aims to achieve the
highest number activation count for a given row in a PRAC-
protected DRAM chip by overwhelming PRAC using a number
of decoy rows, similar to the wave attack [85,87]. In this access
pattern, the attacker hammers a number of rows in a balanced
way, such that PRAC can perform preventive refreshes only for
a small subset of the hammered rows when an RFM is issued.

3Current DDR5 specification [93] notes that NRe f and NDelay always have
the same value. To comprehensively assess PRAC’s security guarantees, we use
different values for the two parameters only in our security analysis of PRAC
(§5).
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When an aggressor row’s victims are refreshed, the attacker
excludes the aggressor row in the next round of activations. By
doing so, this adversarial access pattern achieves the highest
possible activation count for the row whose victims are preven-
tively refreshed latest.

5. Configuration of PRAC and Security Analysis
This section investigates different RFM and PRAC configura-
tions and their impact on security under the wave attack.
Notation. We denote the set of rows that the wave attack
hammers in round i as Ri and the number of rows in Ri as |Ri|.
Key Parameters. We assume a blast radius of 2 [45], a tRC
of 52 ns [93], and a refresh management latency (tRFM) of
350 ns [93], which allows an RFM command to refresh four
victim rows of one aggressor row.
PRFM. In round 1, the wave attack hammers each row in R1
once, causing the memory controller to issue ⌊(|R1|/RFMth)⌋
RFM commands, each refreshing the four victims of one aggres-
sor row. In round 2, the wave attack continues hammering the
non-refreshed rows R2, where |R2| = |R1| − ⌊(|R1|/RFMth)⌋.
By repeating this calculation i times, Equation 1 evaluates the
number of rows with victims that are not refreshed at an arbi-
trary round i (|Ri|).

|Ri|= |R1|−
⌊

∑
i−1
k=0 |Rk|
RFMth

⌋
(1)

To cause bitflips, the wave attack must make sure that 1)
at least one aggressor row’s victims are not refreshed by an
RFM command at round NRH , i.e., |RNRH |> 0, and 2) the time
taken by the attacker’s row activations and RFM preventive
refreshes do not exceed tREFW , i.e., aggressor’s victims are not
periodically refreshed before being activated NRH times. We
rigorously sweep the wave attack’s configuration parameters
and identify the maximum hammer count of an aggressor row
before its victims are refreshed.
PRAC-N. We adapt our PRFM wave attack analysis to PRAC-
N by leveraging two key insights: First, PRAC-N mechanism
will not preventively refresh any row until a row’s activation
count reaches NBO. We prepare rows in R1 such that each
row is already hammered NBO-1 times. Doing so, the number
of rounds necessary to induce a bitflip is reduced by NBO-1.
Second, at least one row’s activation counter remains above
NBO across all rounds after initialization until the end of the
wave attack. This causes PRAC-N to assert the back-off signal
as frequently as possible, i.e., with a time period containing a
recovery period (NRe f × tRFM), a delay period (tBackO f f Delay),
and a window of normal traffic (tABOACT ). Leveraging these
insights, we update Equation 1 to derive Equation 2.

|Ri|= |R1|−NRe f ×
⌊

∑
i−1
k=0 |Rk|

NDelay +(tABOACT /tRC)

⌋
(2)

For a PRAC-N system to be secure, an attacker should not
be able to obtain |RNRH−NBO |> 0 within tREFW for any R1. We
analyze the maximum hammer count of an aggressor row before
its victims are refreshed in a PRAC-N-protected system for a
wide set of NBO and |R1| configurations.

Configuration Sweep. Fig. 1 shows the maximum activation
count an aggressor row can reach before its victims are refreshed
(y-axis) for PRFM and PRAC-N in Figs. 1a and 1b, respectively.
Fig. 1a shows the bank activation threshold to issue an RFM
command (RFMth) on the x-axis and starting row set size (|R1|)
color-coded. Fig. 1b shows the back-off threshold (NBO) on the
x-axis and NRe f color-coded.
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Figure 1: Maximum activations to a row allowed by (a) PRFM and
(b) PRAC-N

From Fig. 1a, we observe that to prevent bitflips for very low
NRH values (e.g., 32 on the y axis), RFMth should be configured
to very low values (e.g., <4), as only such RFMth values results
in activation counts less than NRH for all |R1| values. From
Fig. 1b, we observe that PRAC-N provides security at NRH
values as low as 10 (because a row can receive 9 activations as
annotated) when configured to 1) trigger a back-off as frequently
as possible (NBO = 1) and 2) issue four RFMs in the recovery
period (i.e., PRAC-4). For the remainder of our study, we
assume we can accurately determine NRH and configure PRFM
and PRAC protected systems to avoid all bitflips using these
secure thresholds (which is a difficult problem in itself, given
that determining NRH for every row is not easy, as shown by
multiple works [1, 61, 62, 70, 121–123]).

6. Experimental Evaluation
We evaluate PRAC’s overheads on system performance, DRAM
energy consumption, and DRAM chip area for existing and fu-
ture DRAM chips, by sweeping NRH from 1K down to 16. We
compare PRAC’s overheads against three read disturbance miti-
gation mechanisms: 1) Graphene [75], the state-of-the-art mech-
anism that maintains row activation counters completely within
the processor chip; 2) PARA [1], the state-of-the-art mecha-
nism that does not maintain any counters; and 3) Hydra [86],
the state-of-the-art mechanism that maintains counters in the
DRAM chip and caches them in the processor chip. To evalu-
ate performance and DRAM energy consumption, we conduct
cycle-level simulations using Ramulator 2.0 [97, 98], integrated
with DRAMPower [99]. We extend Ramulator 2.0 [97,98] with
the implementations of PRAC, RFM, and the back-off signal
(as specified in the latest JEDEC DDR5 DRAM specification
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as of April 2024 [93]). We evaluate system performance using
the weighted speedup metric [124, 125].

Table 1 shows our system configuration. We assume a real-
istic quad-core system, connected to a dual-rank memory with
eight bank groups, each containing four banks (64 banks in
total). The memory controller employs the FR-FCFS memory
scheduler [126,127] with a Cap on Column-Over-Row Reorder-
ing (FR-FCFS+Cap) of four [102]. We extend the memory
controller to delay the requests that cannot be served within
tABOACT .

Table 1: Simulated System Configuration
Processor 4.2 GHz, 4-core, 4-wide issue, 128-entry instr. window
Last-Level Cache 64-byte cache line, 8-way set-associative, 8 MB

Memory Controller 64-entry read/write request queues; Scheduling policy: FR-
FCFS+Cap of 4 [102]; Address mapping: MOP [128]

Main Memory DDR5 DRAM [98], 1 channel, 2 ranks, 8 bank groups, 4
banks/bank group, 64K rows/bank

Workloads. We evaluate applications from five bench-
mark suites: SPEC CPU2006 [129], SPEC CPU2017 [130],
TPC [131], MediaBench [132], and YCSB [133]. We group all
applications into three memory-intensity groups based on their
row buffer misses per kilo instructions (RBMPKIs), similar to
prior works [134, 135]. These groups are High (H), Medium
(M), and Low (L) for the lowest MPKI values of 10, 2, and 0,
respectively. Then, we create 60 workload mixes with 10 of
each HHHH, MMMM, LLLL, HHMM, MMLL, and LLHH
combination types. We simulate each workload mix until all
cores execute 100M instructions or 3 billion cycles.

6.1. Performance Evaluation
Fig. 2 presents the performance overheads of the evaluated read
disturbance mitigation mechanisms as NRH decreases. Axes re-
spectively show the NRH values (x axis) and system performance
(y axis) in terms of weighted speedup [124, 125] normalized to
a baseline with no read disturbance mitigation (higher y value
is better). Different bars identify different read disturbance
mitigation mechanisms.
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Figure 2: Performance impact of evaluated read disturbance miti-
gation mechanisms on 60 benign four-core workloads

We make nine observations from Fig. 2. First, as NRH de-
creases, performance overheads of all studied mitigation mech-
anisms increases, as expected, due to the more frequent mitigat-
ing actions (i.e., preventive refreshes) performed.
Effect of Increased Timing Parameters. Second, at an NRH
of 1K, PRAC-4 performs similarly to PARA and is outper-
formed by Graphene, Hydra, and PRFM averaged across all

workloads. We attribute PRAC’s non-negligible overhead at
relatively high NRH values (i.e., 9.7% average and 13.4% max-
imum) to PRAC’s increased DRAM timing parameters [93]
(see §3) as PRAC-Optimistic (i.e., PRAC-4 without increased
DRAM timing parameters) leads to an average (maximum) sys-
tem performance overhead of only 0.001% (0.01%) across the
same workloads at the same 1K threshold. Third, between NRH
values of 1K and 32, PRAC-Optimistic outperforms all evalu-
ated mitigation mechanisms, demonstrating that PRAC without
increased timing parameters has good potential.
PRAC Scales Well Until NNNRH === 333222. Fourth, when NRH de-
creases from 1K to 32, PRAC-4’s average (maximum) system
performance overhead across all workloads increases from 9.7%
(13.4%) to 17.8% (24.5%). In contrast, Graphene and Hydra’s
average (maximum) system performance overheads across all
workloads increase from 0.03% (0.1%) and 0.3% (0.8%) to
13.8% (23.7%) and 23.9% (36.3%), respectively. Fifth, be-
tween NRH values of 128 and 32, PRAC-4 outperforms Hydra
and performs similarly to Graphene. We attribute the relative
improvement against Graphene and Hydra as NRH decreases to
PRAC’s more accurate tracking of aggressor row activations
and the resulting less aggressive preventive refreshes performed.
PRAC Overheads Shoot Up at NNNRH ≤≤≤ 333222. Sixth, between
NRH values of 32 to 16, PRAC-4 and PRAC-Optimistic’s av-
erage (maximum) system performance overheads across all
workloads significantly increase from 17.8% (24.5%) and 9.4%
(16.4%) to 48.5% (63.2%) and 42.9% (57.1%), respectively. We
attribute the significant increase in system performance over-
head to PRAC performing more frequent preventive refreshes.
For example, with PRAC-4 at NRH values of 32 and 16, the
four-core benign workload of 523.xalancbmk, 435.gromacs,
459.GemsFDTD, and 434.zeusmp trigger 27.8 and 72.3 recov-
ery periods per million cycles, resulting in 27.9% and 53.8%
system performance overhead, respectively. Seventh, at an NRH
of 16, Graphene and Hydra outperform all evaluated PRAC and
PRFM implementations.
PRFM Performs Poorly. Eighth, the average (maximum)
system performance overhead of PRFM increases from 2.1%
(3.7%) to 78.0% (90.7%) as NRH decreases from 1K to 16. We
attribute this significant overhead increase to PRFM’s configura-
tion against the wave attack drastically increasing the frequency
of preventive refreshes as NRH decreases, similar to PRAC for
NRH between 32 and 16. Ninth, pairing PRAC-4 with PRFM
increases PRAC’s system performance overhead by an average
(maximum) of 48.3% (192.2%) across all NRH values. This is
because PRAC’s secure configurations (§5) already preventively
refresh all rows before they reach a critical level. Therefore,
pairing PRAC’s secure configurations with PRFM causes per-
formance degradation due to unnecessary preventive refreshes.

We conclude that 1) PRAC’s increased DRAM timing pa-
rameters incur significant overheads even under infrequent pre-
ventive refreshes for modern DRAM chips (i.e., NRH = 1K),
2) PRAC shows similar performance to Graphene and outper-
forms Hydra as NRH values decrease (until 16, where PRAC
starts performing significantly worse), 3) PRFM does not scale
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well with decreasing NRH values and incurs significant system
performance loss, and 4) pairing PRAC with PRFM provides
no system performance advantage.

6.2. Energy Evaluation
Fig. 3 presents the energy consumption of the evaluated read
disturbance mitigation mechanisms (y-axis) as NRH decreases
(x-axis). Energy consumption is normalized to a baseline with
no read disturbance mitigation.
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Figure 3: Energy impact of evaluated read disturbance mitigation
mechanisms on 60 benign four-core workloads

We make four observations from Fig. 3. First, as NRH de-
creases, the DRAM energy overhead of all studied mitigation
mechanisms increases. Second, as NRH decreases from 1K to
16, PRFM’s average DRAM energy overhead significantly in-
creases from 3.3% to 33.1x. Third, as NRH decreases from 1K to
16, PRAC-4’s average DRAM energy overhead increases from
18.4% to 117.2%. In contrast, PRAC-Optimistic’s (i.e., PRAC
without increased DRAM timing parameters) average DRAM
energy overhead increases from 0.004% to 80.7%. Therefore,
a significant portion of PRAC’s DRAM energy is likely due to
the increased timing parameters. We attribute the high increase
in DRAM energy overheads of PRFM and PRAC as NRH de-
creases to 1) their conservative preventive refresh thresholds
against the wave attack, and 2) benign applications triggering
many preventive refreshes. Fourth, as NRH decreases from 1K
to 16, average DRAM energy overheads of Graphene and Hydra
increase from 0.1% and 0.3% to 43.2% and 76.6%, respectively.

We conclude that 1) PRAC and PRFM already incur relatively
high DRAM energy overheads for modern DRAM chips (i.e.,
NRH = 1K), 2) energy overheads of all evaluated mitigations
mechanisms significantly increase for future DRAM chips that
are more vulnerable to read disturbance, and 3) Graphene and
Hydra outperform all PRAC and PRFM implementations at
all evaluated NRH values across all workloads (except PRAC-
Optimistic at NRH values higher than 16).

6.3. Storage Evaluation
Fig. 4 presents the storage requirements of the evaluated read
disturbance mitigation mechanisms as NRH decreases. Axes
respectively show the NRH values (x axis) and storage (y axis)
in mebibytes (MiB).

From Fig. 4, we make four observations. First, as NRH de-
creases from 1K to 16, Graphene’s storage overhead in CPU
increases significantly (by 50.3x) due to the need to track many
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Figure 4: Storage used by evaluated read disturbance mitigation
mechanisms as a function of RowHammer threshold

more rows. Second, as NRH decreases from 1K to 16, PRAC
and Hydra’s storage overheads in DRAM reduce by 54.5% and
45.5%, respectively. We note that while Hydra’s cache structure
in CPU does not change, the overall cache size reduces with
NRH (by 54.5% from 1K to 16) as smaller cache entries are
sufficient to track activations. Fourth, PRFM incurs the least
storage overhead in the CPU among the evaluated mitigation
techniques as it only requires only one counter per bank.

We conclude that PRAC, PRFM, and Hydra incur low storage
overheads and scale well with decreasing NRH values as they
either i) keep counters in DRAM where a large amount of
storage is available at high density or ii) require only a small
set of counters.

7. Performance Degradation Attack
An attacker can take advantage of PRAC to mount memory
performance (or denial of memory service) attacks [136] by
triggering many preventive actions (e.g., back-off signals and
RFMs). This section presents 1) the theoretical maximum down-
time of a PRAC-protected system and 2) simulation results.
Theoretical Analysis. We calculate the maximum possible frac-
tion of time that preventive actions take in a PRAC-protected
system. First, triggering a back-off signal takes NBO × tRC,
which causes NRe f RFM commands, blocking the bank for a
time window of NRe f × tRFM . Therefore, an attacker can block
a DRAM bank for (NRe f × tRFM)/(NRe f × tRFM +NBO × tRC)
of time. We configure NBO, NRe f , tRFM , and tRC as 7, 4, 350 ns,
and 52 ns against an NRH of 16, based on the DDR5-3200AN
DRAM timing constraints specified in the JEDEC standard [93].
We observe that an attacker can theoretically consume 79% of
DRAM throughput by triggering back-offs.
Simulation. To understand the system performance degrada-
tion an attacker could cause by hogging the available DRAM
throughput with preventive refreshes, we simulate 60 four-core
workload mixes of varying memory intensities where one core
maliciously hammers 8 rows in each of 4 banks.4

Our results for NRH values of 128, 64, 32, and 16 show that
PRAC reduces system performance (based on the weighted
speedup metric [124, 125]) on average (maximum) by 20.5%
(30.2%), 23.3% (32.6%), 30.0% (41.0%), and 53.4% (65.2%)
with a maximum slowdown [43, 103] on a single application of

4We experimentally found these values to yield the highest performance
overhead for PRAC in our system configuration. We open-source our attacker
trace generator with the rest of our implementation to aid reproducibility [98].
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63.1%, 64.4%, 68.7%, and 82.6%, respectively. These results
indicate that memory performance attacks can exploit PRAC
and future research should tackle PRAC’s performance over-
heads to avoid such denial of service attacks.

8. Summary and Future Research Directions
We show that PRAC ensures secure operation even for very low
NRH values (e.g., as low as 16, see §5). However, PRAC still
incurs high performance and energy overheads especially at
low NRH values (e.g., 16, see §6.1), which can be maliciously
exacerbated to mount memory performance attacks (§7). There-
fore, reducing PRAC’s performance and energy overheads and
avoiding its denial of service vulnerability are still important
research problems.

We identify at least four directions to explore. A first direc-
tion is to reduce the tRP and tRC timing constraints that increase
when PRAC is enabled. These increased DRAM timing param-
eters incur non-negligible system performance overheads even
at high NRH values. This reduction can be done by 1) lever-
aging large safety margins associated with timing parameters
(as shown in [63, 113, 137–151]) or 2) modifying the DRAM
circuitry to separate the counters from data arrays to parallelize
row activation counter accesses [95]. A second direction is to
overlap the latencies of preventive refreshes and other memory
operations. A workload triggers more preventive actions as NRH
decreases, as even a benign application starts activating DRAM
rows too many (i.e., closer to or more than NRH ) times. Overlap-
ping the latencies of preventive refreshes is possible by 1) lever-
aging subarray-level parallelism [112, 117, 146] or 2) eliminat-
ing the blocking nature of preventive refreshes [96, 152]. A
third direction is to leverage the significant variation in read
disturbance vulnerability across DRAM rows to avoid overpro-
tecting the vast majority of the rows [62, 153]. This direction
requires profiling a given chip with fast, accurate, and compre-
hensive (and likely online [116, 154–156]) profiling methodolo-
gies, which addresses several aspects, including RowHammer’s
complex interaction with temperature [46, 62] and new read
disturbance phenomena like RowPress [70]. A fourth direction
is to defend against malicious attackers that exploit preventive
refreshes. Attackers can trigger increasing amounts of preven-
tive refreshes as NRH decreases, allowing a new attack vector
to conduct memory performance attacks [136]. Preventing
these performance attacks may be possible by accurately de-
tecting and throttling workloads that trigger many preventive
refreshes [120, 157].

9. Related Work
This is the first work that rigorously analyses the security
and performance of PRAC, a key feature introduced in the
latest JEDEC DDR5 DRAM specification [93]. §6.1 qualita-
tively and quantitatively compares PRAC to several prominent
RowHammer mitigation mechanisms [1, 75, 86]. There are
various other mitigation mechanisms that can be implemented
in the memory controller [1, 22, 29, 36, 42, 57, 69, 71, 74–84,
86–88, 90, 91, 96, 119–121, 146, 158–194] or in the DRAM

chip [72, 73, 85, 87, 89, 92, 95, 186, 195–200]. We leave a rigor-
ous comparison of PRAC to this broader set of RowHammer
mitigation techniques to future work.

10. Conclusion
We presented the first rigorous security, performance, energy,
and cost analyses of Per Row Activation Counting (PRAC),
the state-of-the-art RowHammer mitigation technique that is
recently adopted by industry in the DDR5 standard [93]. We
show that PRAC 1) has non-negligible overheads due to in-
creased DRAM timing parameters for today’s DRAM chips,
2) incurs significant system performance and DRAM energy
overheads by triggering increasingly more back-off requests for
future DRAM chips with higher read disturbance vulnerabilities,
3) can be used as a memory performance attack vector to con-
sume a significant portion of the available DRAM throughput
and thus degrade overall system performance, and 4) provides
secure operation for NRH values as low as 10.

We conclude that more research is needed to improve PRAC
by i) reducing the high system performance and DRAM energy
overheads due to increased DRAM timing parameters, ii) solv-
ing the exacerbated performance impact as NRH decreases, and
iii) stopping its preventive refreshes from being exploited by
memory performance attacks.
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[62] L. Orosa, A. G. Yağlıkçı, H. Luo, A. Olgun, J. Park, H. Hassan, M. Patel, J. S. Kim,
and O. Mutlu, “A Deeper Look into RowHammer’s Sensitivities: Experimental
Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses,”
in MICRO, 2021.
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[146] A. G. Yağlikçi, A. Olgun, M. Patel, H. Luo, H. Hassan, L. Orosa, O. Ergin, and
O. Mutlu, “HiRA: Hidden Row Activation for Reducing Refresh Latency of Off-the-
Shelf DRAM Chips,” in MICRO, 2022.

[147] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM Latency PUF: Quickly
Evaluating Physical Unclonable Functions by Exploiting the Latency–Reliability
Tradeoff in Modern Commodity DRAM Devices,” in HPCA, 2018.

[148] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-Memory Compute
Using Off-the-Shelf DRAMs,” in MICRO, 2019.

[149] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “FracDRAM: Fractional Values in
Off-the-Shelf DRAM,” in MICRO, 2022.

[150] L. Orosa, Y. Wang, M. Sadrosadati, J. S. Kim, M. Patel, I. Puddu, H. Luo, K. Razavi,
J. Gómez-Luna, H. Hassan, N. Mansouri-Ghiasi, S. Ghose, and O. Mutlu, “CODIC:

9

https://support.apple.com/en-us/HT204934
https://stefan.t8k2.com/rh/PRAC/index.html
https://github.com/CMU-SAFARI/ramulator2
https://github.com/CMU-SAFARI/ramulator2
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2017
http://www.spec.org/cpu2017
http://tpc.org/


A Low-Cost Substrate for Enabling Custom In-DRAM Functionalities and Opti-
mizations,” in ISCA, 2021.

[151] B. M. S. Bahar Talukder, B. Ray, D. Forte, and M. T. Rahman, “PreLatPUF: Exploit-
ing DRAM Latency Variations for Generating Robust Device Signatures,” IEEE
Access, 2019.

[152] K. Nguyen, K. Lyu, X. Meng, V. Sridharan, and X. Jian, “Nonblocking Memory
Refresh,” in ISCA, 2018.
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