
GbHammer: Malicious Inter-process Page Sharing
by Hammering Global Bits in Page Table Entries

Keigo Yoshioka∗, Soramichi Akiyama†
∗Shibuya Junior & Senior High School, Tokyo, Japan

†College of Information Science and Engineering, Ritsumeikan University, Osaka, Japan
Email: s-akym@fc.ritsumei.ac.jp

Abstract—RowHammer is a vulnerability inside DRAM chips
where an attacker repeatedly accesses a DRAM row to flip bits in
the nearby rows without directly accessing them. Several studies
have found that flipping bits in the address part inside a page
table entry (PTE) leads to serious security risks such as privilege
escalation. However, the risk of management bits in a PTE being
flipped by RowHammer has not yet been discussed as far as
we know. In this paper, we point out a new vulnerability called
GbHammer that allows an attacker to maliciously share a physical
memory page with a victim by hammering the global bit in
a PTE. GbHammer not only creates a shared page but also
enables the attacker to (1) make the victim’s process execute
arbitrary binary and (2) snoop on the victim’s secret data through
the shared page. We demonstrate the two exploits on a real
Linux kernel running on a cycle-accurate CPU simulator. We
also discuss possible mitigation measures for GbHammer and
the risk of GbHammer in non-x86 ISAs.

Index Terms—RowHammer, Page Table, Global Bit

I. INTRODUCTION

RowHammer is a vulnerability inside DRAM chips where
an attacker repeatedly accesses a DRAM row to flip bits in the
nearby rows without directly accessing them [1]. It can result
in serious outcomes such as OS-level privilege escalation [2],
secret data leakage [3], Denial-of-Service [4], breaking VMM-
level memory isolation [5], and confusing AI models [6].

Despite many RowHammer-based exploits found, the risk of
management bits in page table entries (PTEs) being hammered
is yet to be discussed. To this end, we demonstrate two
new exploits when the global bit of a PTE is flipped by
RowHammer, which we refer to as GbHammer. GbHammer
forces the CPU to use the same address translation information
between the attacker and the victim, resulting in a physical
memory page maliciously shared by them. Through the shared
page, the attacker can make the victim execute binary code that
the attacker crafts and snoop on secret data of the victim.

The contributions of this paper are as follows:
1) We are the first to discuss the risk of management bits

in PTEs being hammered as far as we know.
2) We propose two new exploits based on GbHammer,

and demonstrate that they indeed work using a cycle-
accurate CPU simulator gem5 and a real Linux kernel.

3) We investigate the specifications of ISAs other than
x86 64, namely ARMv7 and RISC-V, and discuss that
the same exploits can be executed on them.

4) We discuss possible mitigation measures of GbHammer
and the challenges in achieving these measures.

II. PRELIMINARIES

A page table entry (PTE) refers to one line of a page table
that consists of a mapping from a virtual address to a physical
address and some additional management bits. Among these
management bits, a PTE in x86 has one called a global bit [7].
A PTE with the global bit enabled is called a global PTE. A
global PTE indicates that the address translation information
represented by that PTE may be used among different pro-
cesses. It is beneficial for some special cases where multiple
processes use the same address translation information. For
instance, the kernel address space is often mapped to the same
virtual address ranges of different processes.

On Intel processors, a global PTE is associated with a
global TLB entry. TLB (Translation Look-aside Buffer) caches
address translation information that is recently used and the
cached information is referred to as TLB entries. It greatly im-
proves CPU performance because accessing the TLB is faster
compared to a normal page table walk that requires multiple
DRAM accesses. When the address translation information
within a global PTE is cached to the TLB, the TLB entry
also becomes global. This means that the CPU may use the
same TLB entry for different processes from the one that has
created the entry. More concretely, the Intel manual [7] says
that a processor may use a global TLB entry to translate a
linear address, even if the TLB entry is associated with a
PCID different from the current PCID. Here, PCID (Process-
Context Identifier) is a value assigned to each TLB entry and it
is unique to the process that created the entry. PCID prevents
the TLB from being completely flushed in a context switch.

III. NEW VULNERABILITY: GBHAMMER

A. Threat Model

In this paper, we assume that an attacker can login to the
same physical machine as the victim and can execute programs
with a user privilege. Specifically, an attacker can

1) login to the same machine as the victim by using
measures such as an SSH client,

2) prepare a program on that machine by either writing
code and compiling it or transferring an already com-
piled binary by using measures such as SCP,

3) execute the prepared program with a user privilege on
any core including the one on which the victim’s process
is executed, and

attacker’s page victim’s page

… …

0 A V

N → A

N → V

attacker’s
process

victim’s
process

physical
memory

address
translation

A: physical address of attacker’s page
V: physical address of victim’s page
N: virtual address

Fig. 1. Malicious Page Sharing by GbHammer

4) access the executable file that the victim invokes as a
process (the intention is explained in Section III-C).

B. Malicious Page Sharing

GbHammer is an attack that allows an attacker’s process
to maliciously share physical memory pages with a victim’s
process. This attack is achieved by flipping a global bit of a
PTE by RowHammer. This makes the same address translation
information used by both the attacker’s and the victim’s
processes, resulting in a shared physical page among them.

Fig. 1 illustrates the situation where a physical page is
maliciously shared by GbHammer. Here, N represents a virtual
address that both the attacker’s and victim’s processes use.
Note that using the same virtual address itself is completely
normal and allows no malicious data access thanks to the
isolation of virtual address spaces. A and V represent the
physical addresses that are mapped from N in the virtual ad-
dress spaces of the attacker’s process and the victim’s process,
respectively. These mappings are shown in the figure as the
address translation labeled with N→A and N→V, respectively.
The black arrows from the attacker’s process to the physical
page at address A show that memory accesses by the attacker’s
process go to the attacker’s page as expected. On the other
hand, the grey arrows from the victim’s process show that
memory accesses from the victim’s process are maliciously
forwarded to the attacker’s page.

In summary, GbHammer allows an attacker to create a
shared page as follows:

1) The attacker’s process flips the global bit of the PTE
that maps N to A in their own address space using
RowHammer. This makes this PTE global.

2) The attacker’s process issues a memory access to virtual
address N. This creates a global TLB entry that maps N
to A.

3) The attacker waits until the victim’s process accesses
virtual address N. Because the CPU has a global TLB
entry that maps N to A, the access by the victim’s process
ends up going to the physical address A instead of V.

4) This means that the physical page starting from physical
address A is now shared among the attacker’s process
and the victim’s process.

C. Steps of GbHammer

Here we elaborate on the steps of GbHammer in more detail.
• Step (1): The attacker acquires a virtual address N that

the victim’s process uses. This is necessary because Gb-
Hammer only works when the attacker’s and the victim’s
processes use the same virtual address.

• Step (2): The attacker creates a mapping from N to any
physical address in the attacker’s virtual address space.

• Step (3): The attacker flips the global bit in the PTE
that maps N in the attacker’s virtual address space by
RowHammer.

Step (1): The attacker’s process conducts the following
two procedures. Note that the procedures described here only
work for the Arbitrary Binary Execution exploit based on
GbHammer (explained in Section III-D), and how to achieve
Step (1) for the Data Snooping exploit is future work.

First, the attacker acquires the offset of binary code that
the victim’s process executes. This is done by disassembling
the binary that is executed by the victim’s process. Although
the attacker only has a normal user privilege on the target
machine, they can still achieve this when the victim executes
a pre-compiled binary downloaded from software repositories
(e.g., by the apt command). This is a common assumption
in some ROP-style attacks [8], [9].

Second, the attacker bypasses ASLR (Address Space Layout
Randomization) to acquire the starting virtual address on
which the code of the victim’s process is placed. By combining
this address and the offset acquired in the previous paragraph,
the attacker can know the virtual address N of an arbitrary
piece of code that the victim executes. To bypass ASLR, the
attacker can leverage existing techniques such as detecting
collisions in the BTB (Branch Target Buffer) [10].

Step (2): There are two methods to achieve Step (2). The
first method is to use the mmap systemcall. POSIX.1-2001
defines the prototype of mmap as follows [11].

void *mmap(void *addr, size_t length,
int prot, int flags, int fd, off_t offset);

addr is a hint to the OS for the starting address of the
created mapping. The attacker can specify N to this argument
and the OS usually respects it when creating a mapping.

The second method to achieve Step (2) is to specify N as
an address of functions and global variables inside an ELF
binary. An ELF binary file contains virtual addresses on which
sections are loaded, and this address is used as-is when the
binary is compiled with the -static option of gcc.

Step (3): The attacker’s process conducts the following five
procedures. First, the attacker allocates a large and contin-
uous memory region R with mmap. The returned memory
region is also continuous on the physical memory due to the
characteristics of the buddy allocator of Linux [3], [12]. A
corner case scenario where memory is fragmented is also

discussed in [3]. Second, the attacker hammers pages in R
to find a target page. A target page is a page that has a bit
vulnerable to RowHammer at the bit position which would be
interpreted as global bits when the page is used as a page
table page. For example, when N is 0x20000, any page
whose 32712 (= 64× 511+8)th bit from the least significant
bit is vulnerable can be a target page. Note that the address
translation information for virtual address 0x20000 is placed
in the first PTE out of 512 PTEs (64 bits each) stored in a page
table page. Third, the attacker returns the target page to the
OS by munmap. Fourth, the attacker creates a mapping from
virtual address N using mmap with the MAP_POPULATE flag.
Because the OS reuses the just-returned page as the page table
page for the newly created mapping [13], this makes the target
page to be used to store the PTE that maps virtual address N
to a physical page. Finally, the attacker uses other pages in R
to hammer the target page until the global bit flips. A bit that
has flipped in the previous hammering is likely to flip again
due to the strong locality of bit-flips.

We make two important notes here. First, targeting a man-
agement bit of a PTE with RowHammer is almost equivalent
to targeting the address part (the only difference is the bit
position to hammer), which is already done in a body of
work [2], [5], [12], [13]. Therefore, we believe that targeting
a global bit is feasible although our experiments focus on
the outcomes of it. Second, separating user- and kernel-space
pages in the physical memory to prevent the OS from reusing
a target page as a page table page can be invalidated by
PTHammer [2]. As far as we know, there is no solution yet
to PTHammer except for activation-tracking mechanisms [14],
[15] that require additional hardware.

D. Exploits based on GbHammer

GbHammer enables two new exploits: arbitrary binary ex-
ecution and data snooping.

1) Arbitrary Binary Execution: The attacker’s process can
make the victim’s process execute an arbitrary binary as illus-
trated in Figure 2. To do this, the attacker’s process maliciously
creates a share page that is mapped from virtual address N
where a part of the binary code of the victim’s process resides
in the victim’s address space. Then, the attacker’s process
stores the binary that it wants the victim’s process to execute to
the created shared page. Third, the attacker executes the binary
by itself to create a global iTLB entry. When the victim’s
process tries to execute the code at virtual address N later on,
it will mistakenly execute the binary stored by the attacker.

2) Data Snooping: The attacker’s process can snoop on
data written by the victim’s process. To do this, the attacker’s
process maliciously creates a share page that is mapped from
virtual address N to which the victim’s process stores secret
data. Then, the attacker’s process accesses address N to create
a global dTLB entry. The attacker waits until the victim’s
process mistakenly stores its data on the shared page by
writing it to address N. After that, the attacker simply reads
the data from the shared page.

victim attacker

execute

void victim_func(int key){
 …
 int x = key;
 …
}

void malicious_func(int key){
 …
 send(key, attacker_IP);
 …
}

malicious code

store

Isolation by virtual memory

legitimate code

Fig. 2. Binary Execution Exploit

TABLE I
EXPERIMENT ENVIRONMENT

Software Version
Simulated OS Ubuntu 18.04.2 (Linux kernel 5.4.49)

gem5 23.0.0.1
gcc 9.4.0

TABLE II
CONFIGURATION PARAMETERS OF GEM5

Software Version
Simulated ISA x86 64

CPU AtomicSimpleCPU, 1 core
Memory Atomic

TLB 64 entries each for iTLB and dTLB

IV. EXPERIMENTAL RESULTS

A. Reproducing GbHammer with gem5

We reproduce GbHammer on a cycle-accurate CPU simula-
tor gem5 [16] and its Full System mode that can run an entire
OS to assess the risk under realistic settings. We use the latest
Linux kernel known to work on it [17] and other software as
shown in Table I. We employ the AtomicSimpleCPU model
that does not simulate the detailed timing of each instruction to
achieve fast simulation (tens of minutes to boot Ubuntu). The
use of this simple CPU model should not affect the validity
of the experimental results because the detailed timings such
as pipeline stalls are not relevant to this work. The simulated
CPU has a single core to ensure that the attacker’s and the
victim’s processes are executed on the same core and use
the same TLB. For the memory model, we also employ a
simple one named Atomic. The use of this simple memory
model should neither affect the validity of the experimental
results because we do not reproduce RowHammer inside
the simulated memory unlike Hammulator [18] does. Other
configuration parameters of gem5 are shown in Table II.

Reproducing GbHammer follows the procedures below.
1) We fix the target virtual address (i.e., N) to 0x20000.

This avoids the necessity of achieving Step (1) and
allows us to focus on the outcomes of GbHammer.

int f() {
return 1;

}

void main() {
sleep(5); // GbHammer happens here
printf("This is victim.\n");
printf("Expected output: 1\n");
printf("Actual output: %d\n", f());

}

Fig. 3. Victim Code for the Binary Execution Experiment

2) Processes of the attacker and the victim are invoked on
the simulated OS controlled via Telnet. We explain how
these processes are implemented later.

3) When a TLB entry is created for the target virtual
address, the entry is forcefully set as global. We im-
plement this in the source code of gem5, namely
src/arch/x86/tlb.cc. The insert function is
modified to set the global bit to 1 when the virtual
address of a new TLB entry is 0x20000.

The choice of using gem5 to reproduce GbHammer comes
from the reliability. Although it is possible to reproduce
RowHammer (and thus GbHammer) on a real machine, re-
producing it reliably requires much engineering effort such as
reverse-engineering the DRAM address mapping embedded in
the memory controller using existing methods [19], [20]. We
use gem5 to reliably reproduce GbHammer to focus more on
the outcome and the risk of it, rather than on how to make it
happen which is based on well-established building blocks.

B. Setup: Arbitrary Binary Execution

In this experiment, the source code of the victim’s process
defines a function f that returns 1. The victim’s process sleeps
for 5 seconds, calls f, and then prints the result returned by
f. Fig. 3 shows the source code of the victim’s process. The
sleep duration (5 s) can be any value as long as there is enough
time for the attacker to do its job between the invocation of
the victim’s process and the call of f. The attacker’s process,
meanwhile, creates a shared page whose virtual address starts
from 0x20000 by GbHammer, writes to the shared page
a binary blob compiled from a function that returns 2, and
then executes the binary blob as a function. This creates a
global iTLB entry (because of our modification to gem5)
that translates the virtual address 0x20000 into the physical
address of the attacker’s page that contains the binary blob.

The victim’s function f is placed at virtual address
0x20000 with the help of a linker script we craft. A linker
script is passed to gcc and specifies how functions and global
variables are placed in the virtual address space of a process.
This enables us to place f at a specific virtual address and
also separate it from other functions and variables. On the
other hand, in a real attack scenario, the attacker must rewrite
an entire page that may contain not only f but also other data
so that the victim’s process does not simply crash.

timeline

(b)

victim

0s

Write,
Execute

Sleep

1s 2s 3s 4s 5s

Execute

6s

Sleep Sleep Sleep Sleep

attacker’s address
translation information 0x20000 → A

0x20000 → A0x20000 →
V

f(a)…

0 A V

A: address of attacker’s page
V: address of victim’s page

f(a): attacker’s binary, returns 2
f(v): victim’s binary, returns 1

victim’s address
translation information

attacker

(a)

f(v) …

Fig. 4. Timeline of the Binary Execution Exploit

Figure 4 shows the timeline of this experiment. Here, A
and V refer to the physical addresses that are translated from
the virtual address 0x20000 in the address spaces of the
attacker and the victim, respectively. The first and second
rows (labeled as attacker and victim, respectively) show the
operations executed by the two processes. The third and fourth
rows show the address translation information that the two
processes would use at a particular point in time. The victim’s
process can properly translate 0x20000 to V before the
attacker conducts GbHammer. However, after t = 1s, the
victim’s process mistakenly translates 0x20000 into A, where
the malicious binary blob has been written by the attacker.
This is because the global iTLB entry created by the attacker’s
process is used by the victim’s process as well.

C. Setup: Data Snooping

In this experiment, the victim’s process first allocates a
memory region starting from address 0x20000, sleeps for
5 seconds, and then writes a secret string “This is victim’s
data” to the region. The sleep duration (5 s) can be any value
as long as there is enough time for the attacker to do its
job between the memory allocation and data writing by the
victim’s process. The attacker’s process, meanwhile, creates a
shared page whose virtual address starts from 0x20000 by
GbHammer, reads the data from it every second, and outputs
the data concatenated with a string “This is attacker”. A global
dTLB entry is created when the attacker’s process reads the
shared page for the first time because of our modification to
gem5. The victim’s process mistakenly translates the virtual
address 0x20000 using this dTLB entry and the secret string
is maliciously stored on the shared page.

D. Results

1) Binary Execution: Fig. 5 shows the output from the
victim’s process we observed on the terminal. The first and
second lines are pre-defined strings and they are properly
output. The value after “Actual output:” in the third line is
the return value of what the victim’s process thinks is f.

We confirmed that GbHammer allowed the attacker to
make the victim’s process execute the binary that the attacker
prepared. After the victim’s process executed what it thinks

This is victim.
Expected output: 1
Actual output: 2

Fig. 5. Result of Binary Execution Experiment

This is attacker
This is attacker
This is attacker
This is attacker
This is attacker
This is attacker
This is attacker This is victim’s data
This is attacker This is victim’s data
This is attacker This is victim’s data
This is attacker

Fig. 6. Result of Data Snooping Experiment

is function f, it printed 2 instead of 1 as shown in Fig. 5.
This means the binary that the attacker had written to the
maliciously shared page was executed instead of f.

2) Data Snooping: Fig. 6 shows the output from the
attacker’s process we observed on the terminal. From the first
to the fifth lines (from t = 0s to t = 5s), the attacker’s
process printed “This is attacker” and nothing after it. From
the seventh to ninth lines (from t = 6s to t = 8s), the
secret string that the victim had written to a memory region
that it had allocated was printed by the attacker.

We confirmed that the GbHammer allowed the attacker to
snoop on the victim’s data. After the victim’s process had
written the secret string to the memory region that it had
allocated, the attacker’s process successfully printed that data
to the terminal. This means that the victim was forced to write
the secret data to the maliciously shared page and the attacker
could read the data from it.

V. POSSIBLE MITIGATION MEASURES

A. Modifying mmap

The OS can ignore the virtual address given as an argument
of mmap to make Step (2) of GbHammer harder to achieve.
Because the virtual address of an allocated memory region
does not matter for ordinary programs, this change should not
affect many use-cases of mmap. For example, when a program
maps a file into memory using mmap, the same source code
of the program should work for any virtual address used as
the starting address of the mapping.

There are two use cases of mmap we are aware of that
require a newly allocated memory region to be placed at a
specific virtual address. Except for these cases (and others
that we are not aware of if any), it is safe to simply ignore the
virtual address specified as the starting address of the mapping.
The two use cases are as follows:

1) Shared library loading: Linux programs specify virtual
addresses to mmap when they load shared libraries (i.e.,
.so files). This is because a shared library contains

different sections that must be loaded with different
protection modes (e.g., read-only, executable-but-not-
writable) but must also be contiguous to each other.
One way of achieving this without specifying the starting
addresses of mappings would be to create a new system
call that accepts multiple protection modes and offsets
inside a mapping to use each protection mode. For
example, a program can use this new system call to map
lib.so to any address, and make it read-only from
offset 0 to offset 1024 but executable-but-not-writable
from offset 1024.

2) Container live migration: migrating a container from
one host machine to another requires memory allocation
in the destination host with the virtual addresses spec-
ified. This is because the layout of the virtual address
spaces of the processes that the container consists of
must be replicated from the source to the destination
host. Otherwise, every value in the container’s memory
and registers that represents an address must be rewritten
to a new value. This is impractical because there is no
decisive method to know if a value (e.g., 0x20000) is
an address or something else.

B. Modifying the Loader

Specifying virtual addresses of sections in an ELF binary
when it is loaded is another method to achieve Step (2) of
GbHammer. The OS can ignore this as long as the ELF binary
is compiled as position-independent code (PIC). PIC enables
sections of an ELF binary to be loaded on any virtual address
by placing fake addresses in the binary that are rewritten to
actual ones at load time.

This measure is applicable as long as the source code of the
victim’s program is available and compatible with a modern
compiler. Because creating a PIC binary requires compiling it
from the source code, it cannot be applied to existing non-PIC
programs whose source code are either closed or lost.

C. Ignoring the Global Bits

Enabling the global bit of a PTE does not guarantee that
the address translation information is used by other processes,
as the Intel manual says a processor may use [7] global TLB
entries. The PGE bit (bit 7) in a control register named CR4
decides whether the global bit of a TLB entry is respected or
not (described in Section 4.10.2.4 “Global Page” of [7]). Thus,
the risk of GbHammer is completely eliminated if this flag is
disabled. However, it is important to assess the effectiveness
of this measure by considering the overhead incurred by
completely disabling the global bits. As far as we know, this
overhead is not well studied under the combination of modern
processor architectures and modern applications.

VI. DISCUSSION

A. GbHammer in ARMv7 and RISC-V

GbHammer and the exploits based on it are also applicable
to the ARMv7 and RISC-V ISAs. A PTE of ARMv7 has nG
bit (non Global bit) which functions conversely to the global

bit in x86 [21]. Just like on x86, an attacker can share a single
page with the victim with each successful GbHammer attempt
on an ARMv7 processor. This is because the nG bit exists
only in the last level of the hierarchy of address translation
information where the physical page number is stored.

The hierarchy of address translation information in RISC-V
is different from that in x86 and ARMv7. Unlike them, every
level of the hierarchy in RISC-V has the same management
bits including G bits, meaning that every level can be global.
Specifically, the manual [22] says in its Section 10.3.1 that for
non-leaf PTEs, the global setting implies that all mappings in
the subsequent levels of the page table are global. Note that
every level of address translation information is called a page
table in RISC-V (unlike page table, page directory, etc. in x86).
The risk of GbHammer in RISC-V could be much larger than
that of x86 or ARMv7, because a much larger address range
is maliciously shared at once.

B. Relaxed Constraints on the Victim’s Process

We let the victim’s process sleep for some amount of time
(5 seconds specifically in our current experiments) so that the
attacker’s process can execute GbHammer during this period.
This constraint could be a large hurdle for the attacker because
there is no straightforward way to let other processes sleep
with a user privilege. Instead, an attacker could target a process
that repeatedly accesses the same virtual address (e.g., calling
the same function over and over) in a loop to relax this
constraint. This effectively gives the attacker enough time to
execute GbHammer to the address that the victim accesses. In
this scenario, the attacker needs to invalidate the non-global
TLB entry created by the victim’s process by using measures
such as constructing eviction sets for the TLB [2].

Our experimental setup needs improvement to conduct
experiments for this scenario. In the current setup, we set
the global bit of a TLB entry when its corresponding virtual
address is 0x20000. This happens no matter which process
creates the TLB entry because our modified gem5 does not
distinguish the process that creates a TLB entry. Thus, a TLB
entry is mistakenly set as global when the victim’s process first
creates one inside a loop, resulting in a diversion from what
would happen when a real GbHammer attack is executed.

VII. RELATED WORK

GbHammer and the exploits based on it are novel in three
aspects. First, GbHammer reveals the risk of management
bits in page table entries being hammered, while previous
studies focus on hammering the address parts. Zhang et
al. [2] show that an attacker can access protected memory
regions such as the kernel space by maliciously overwriting
address translation information on a page table entry. Yuan
et al. [5] demonstrate that a bit flip induced by RowHammer
attack can bypass memory isolation forced by virtualization.
Second, the arbitrary binary execution exploit is advanced in
its uniqueness. Although many exploits based on RowHammer
have been reported [2]–[6], we are the first to achieve arbitrary
code execution as far as we know. Finally, the data snooping

exploit could be advanced in its reliability and read speed. A
previously known exploit that enables reading data is RAM-
Bleed [3]. Because RAMBleed uses RowHammer to guess
the data bits stored in the aggressor row by observing bit-flips
incurred to the victim row, it only achieves 0.31 bits/second at
an accuracy rate of 82% [3]. Our data snooping exploit can
read data with much faster speed and higher accuracy once a
shared page is successfully created because a data read from
the shared page is merely a normal memory copy (from the
shared page to either a register or another memory page).

VIII. CONCLUSION AND FUTURE WORK

While various exploits based on RowHammer have been
discovered, this research focuses on the risk of the global in
a page table entry (PTE) being hammered. We found that two
new exploits, arbitrary binary execution and data snooping, are
possible by flipping the global bit with RowHammer. We also
demonstrated that they actually work for a real Linux kernel
on a cycle-accurate CPU simulator. Our future work includes
observing the behavior of GbHammer in real machines and
reproducing GbHammer in RISC-V to prove that it indeed
has a larger risk than in x86 and ARMv7.

ACKNOWLEDGMENT

This work was supported by JST Global Science Campus
Experts in Information Science, and JST, PRESTO Grant
Number JPMJPR22P1, Japan. We thank the anonymous re-
viewers for their valuable feedback to improve this paper.

REFERENCES

[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in International
Symposium on Computer Architecture (ISCA), 2014, pp. 361–372.

[2] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“Pthammer: Cross-user-kernel-boundary rowhammer through implicit
accesses,” in International Symposium on Microarchitecture (MICRO),
2020, pp. 28–41.

[3] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading
bits in memory without accessing them,” in IEEE Symposium on Security
and Privacy (S&P), 2020, pp. 695–711.

[4] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking down the
processor via rowhammer attack,” in Workshop on System Software for
Trusted Execution (SysTEX), 2017, pp. 1–6.

[5] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one
cloud flops: Cross-VM row hammer attacks and privilege escalation,”
in USENIX Security Symposium, 2016, pp. 19–35.

[6] S. Li, X. Wang, M. Xue, H. Zhu, Z. Zhanga, Y. Gao, W. Wu, and X. S.
Shen, “Yes, one-bit-flip matters! universal DNN model inference deple-
tion with runtime code fault injection,” in USENIX Security Symposium,
2024, pp. 1–16.

[7] Intel, “Intel 64 and IA-32 Architectures Developer’s Manual: Vol. 3A,”
https://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html,
2023.

[8] P. Muntean, R. Viehoever, Z. Lin, G. Tan, J. Grossklags, and C. Eckert,
“iTOP: Automating counterfeit object-oriented programming attacks,”
in International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2021, p. 162–176.

[9] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty of
preventing code reuse attacks in c++ applications,” in IEEE Symposium
on Security and Privacy (S&P), 2015, pp. 745–762.

[10] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over aslr:
Attacking branch predictors to bypass aslr,” in International Symposium
on Microarchitecture (MICRO), 2016, pp. 1–13.

[11] Linux manual page, “mmap(2),” https://www.man7.org/linux/man-
pages/man2/mmap.2.html, 2023.

[12] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
rowhammer attacks on mobile platforms,” in ACM Conference on
Computer and Communications Security (CCS), 2016, p. 1675–1689.

[13] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015.

[14] N. Bostanci, I. E. Yuksel, A. Olgun, K. Kanellopoulos, Y. C. Tugrul,
G. Yaglikci, M. Sadrosadati, and O. Mutlu, “CoMeT: Count-min sketch-
based row tracking to mitigate rowhammer with low cost,” in Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2024, pp. 593 – 612.

[15] A. Saxena and M. Qureshi, “Start: Scalable tracking for any rowhammer
threshold,” in International Symposium on High-Performance Computer

Architecture (HPCA), 2024, pp. 578–592.
[16] gem5, “The gem5 simulator,” https://www.gem5.org/, 2024.
[17] Ayaz Akram, “Tutorial: Run Full System Linux Boot Tests,” https://

gem5art.readthedocs.io/en/latest/tutorials/boot-tutorial.html, 2019.
[18] F. Thomas, L. Gerlach, and M. Schwarz, “Hammulator: Simulate now –

exploit later,” in Third Workshop on DRAM Security (DRAMSec), 2023,
pp. 1–7.

[19] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM addressing for Cross-CPU attacks,” in USENIX
Security Symposium, 2016, pp. 565–581.

[20] C. Helm, S. Akiyama, and K. Taura, “Reliable reverse engineering
of intel dram addressing using performance counters,” in International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2020, pp. 1–8.

[21] ARM, “ARM architecture reference manual ARM v7-A and ARM v7-R
edition,” https://developer.arm.com/documentation/ddi0406/b, 2008.

[22] RISC-V, “The RISC-V instruction set manual volume II: Privileged
architecture,” Version 20240411, 2024.

