
MAD: Memory Allocation meets Software Diversity
Manuel Wiesinger

Vrije Universiteit Amsterdam
m.wiesinger@vu.nl

Daniel Dorfmeister
Software Competence Center Hagenberg

daniel.dorfmeister@scch.at

Stefan Brunthaler
µCSRL – Research Institute CODE

Universität der Bundeswehr München
brunthaler@unibw.de

Abstract—Vulnerabilities emanating from DRAM errors pose
a vexing problem that remains, as of yet, unsolved and elusive
but cannot be ignored. Prior defenses focused on specific details
of early RowHammer attacks and fail to generalize with the
generalizations of recent RowHammer attacks. Even worse, it
is presently not clear that techniques from prior defenses will
be able to cope with these generalizations or if an entirely new
approach is required. Although still work-in-progress, we have
identified a new approach that combines memory allocation with
principles underlying software diversity and shows promising
early results.

At first glance, software diversity seems to be an unlikely con-
tender, since it faces seemingly insurmountable obstacles, primarily
the lack of sufficient entropy in memory subsystems. Our system—
called MAD, short for memory allocation diversity—leverages
two novel, complementary spatial diversification techniques to
overcome this entropy obstacle. Entropy aside, MAD offers ease-
of-implementation, negligible performance impact, and is both
hardware and software agnostic.

From a security perspective, MAD’s goal is to deter Row-
Hammer attacks by delaying them to the maximum extent possible.
Such a delay opens the door for a variety of additional responses,
e.g., proactive rebooting, or complementary in-depth analysis of
ongoing attacks that would be too slow for an always-on defense.

I. DIVERSITY MEETS ROWHAMMER

The RowHammer vulnerability, published in 2014 [1], has
taken the world by surprise and dealt a severe blow to one of the
core tenets of operating systems, namely the integrity of their
internal data structures. Without actually accessing internal OS
data structures (e.g., page tables), RowHammer attacks showed
how to manipulate these data by row hammering adjacent
memory rows.

Recent results demonstrate that RowHammer is still possible
on DDR4 DRAM devices that use the hardware defense target
row refresh (TRR) [2], [3], and that ECC memory—contrary to
initial thoughts—provides no safe haven [4]. What follows from
these recent developments is that much of the prior approaches
to prevent RowHammer attacks provide inadequate protection.

Two important generalizations over the state-of-the-art from
the early period of RowHammer attacks are as follows: (i) spa-
tial co-location helps but is not an indispensable prerequisite
(single/double-sided RowHammer extended to many-sided
RowHammer); and (ii) error correction puts constraints on
which susceptible bit flips an attack may use. In an upcoming
paper, we also see that exclusive protection in operating systems
is inadequate, as JavaScript continues to offer sufficient attack
surface [3], [5].

A closer investigation of RowHammer attacks shows that
they have one thing in common: they require a form of memory
massaging [6]–[8]. This memory massaging is required to
obtain a vulnerable configuration, i.e., a configuration that is
amenable to adversarial control. The vulnerable configuration
consists of (i) a memory allocation that the attacker needs
for RowHammer, i.e., control of the rows that, if subjected to
RowHammer, trigger a bit flip in some other target location,
as well as (ii) forcing a third party to put target data into that
target location. This third party often is a memory allocator.

Three implications arise from these observations. First, the
adversary requires a reconnaissance phase to identify the
vulnerable configuration, i.e., the specific rows he needs to
control and which rows hold flippable bits suitable for target
data manipulations. Second, the adversary needs to acquire
control of the vulnerable configuration. Third, the adversary
needs a way to coerce and coopt the third party, e.g., through
predictability of a memory allocator. Note that the first and
second stages may be combined.

We have identified two different strategies of abusing
predictable memory allocators: (i) dense-allocation massaging,
e.g., Flip-Feng Shui [7] or memory waylaying [8], and (ii)
sparse-allocation massaging, e.g., Phys-Feng Shui [6] or
memory chasing [8]. Dense means that the adversary allocates
and holds all memory, whereas in sparse allocation, she tries
to allocate all, but hold on to as little memory as necessary.

Memory spraying techniques, exemplified by Seaborn and
Dullien’s Rowhammer attack [9], combine aspects of these two
allocation strategies. Instead of allocating all memory, which
could trigger operating system intervetion, spraying uses a
dense approach to allocate large partitions of memory, e.g.,
allocating a third of all available memory. If spraying did
not find a vulnerable configuration, then the memory partition
will be released, and a new attempt will be made—effectively
resembling a sparse-allocation.

Software Diversity belongs to the area of biologically-
inspired software defenses, with the core principle to overcome
negative effects of a monoculture. In code-reuse attacks,
adversaries enjoy large economies of scale through executable
programs being identical across vast numbers of machines. In
RowHammer attacks, adversaries enjoy similar benefits through
the predictability of operating systems, specifically memory
allocation strategies and management of internal data structures.

The key difference between these attacks is their suscep-
tibility and amenability to diversification transformations. A
diversifying compiler can, for example, randomize essentially



all aspects of an executable, and since there is essentially no
hard limitation for executable size, diversity remains effective.
Transplanting the core principles underlying diversity to the
domain of memory allocation brings about an important
challenge: the lack of entropy in memory allocation. A memory
allocator, on the other hand, has a hard limit, namely the fixed
amount of physical memory present in a computer. Consider,
for example, a system with 16 GB of RAM, the memory
allocator manages merely four million 4KB memory pages,
thus severely limiting the applicability and effectiveness of
traditional diversification techniques.

MAD combines two complementary novel, spatial diversi-
fication techniques that overcome the entropy obstacle and
prolong both allocation strategies. Prolonging dense-allocation
massaging gives us the opportunity to maximize the likelihood
of detecting such an attack. Prolonging sparse-allocation
massaging allows us to increase the time required for the
attack to succeed, ideally such that performing the attack never
succeeds. Since memory spraying techniques combine aspects
of both massaging techniques, MAD prolongs spraying, too.

Summing up, the contributions of this paper are as follows:
• We introduce memory allocation diversity, MAD for short,

a method to diversify memory management. At its core,
MAD uses a diversified cache that manages the memory
blocks obtained from an underlying memory manager.

• We illustrate two novel, spatial diversification techniques
that combine to deter the memory massaging part of a
RowHammer attack.

• We subjected the prototype to a variety of different
experiments to evaluate its security. Our early results
look promising, they indicate that MAD delays sparse-
allocation memory massaging and offers leverage to detect
dense-allocation massaging.

II. THREAT MODEL AND ASSUMPTIONS

In our threat model, the adversary performs memory mas-
saging as a by-product of the actual attack. By exploiting
RowHammer, e.g., an adversary may be interested in per-
forming privilege escalation. Alternatively, however, an attack
may focus on altering information in a web browser by row
hammering through JavaScript [3], [5]. Since MAD itself
generalizes to both domains—web browsers and operating
systems—the corresponding threat model differs. To this end,
we focus on the operating system domain in this paper.

Our assumptions include the following:
• The kernel is considered to be safe. As a result, the attacker

cannot modify kernel internals or tamper with MAD’s state
or with the kernel’s random number generator.

• The attacker can execute unprivileged code on a system.
From the perspective of MAD, it does not matter whether
the attacker is working on a remote, virtual image, or on
a local machine.

• The attacker cannot access the page map of the attack.
This assumption is not a strong requirement but serves
as a simplification, as the information would help the

p = alloc(size=N)
...
free(p)
...
p = alloc(size=N)

φ

φ

φ

φ

ψ

φ Block
Recycling

Buddy
Allocator

MAD

Figure 1: Comparison of page allocation for a given sequence
with and without MAD. Without MAD, the second alloc
call returns ψ, demonstrating enumeration. With MAD, block
recycling ensures that the second invocation of alloc returns
φ again.

attacker but is not sufficient to break MAD, as the attacker
cannot manipulate the random number generator.

III. BACKGROUND

We expect the reader to be intimately familiar with Row-
Hammer attacks and buddy allocators. Thus, to save space
and provide background where needed, we focus on a brief
discussion of software diversity.

In 1993, Cohen published his pioneering article on software
diversity and called it the “ultimate defense” [10]. He argued
that sufficiently unpredictable execution behavior increases
the complexity of attacks such that they are not impossible
but become too costly to perform. In 2010, Franz saw that
through aligned paradigm shifts, the major obstacles foreseen
by Cohen would be overcome [11]. These shifts, along with the
advent of code-reuse attacks, led to renewed interest in software
diversity [12]. Three different diversification methods have
proven capable: (i) virtual-machine based diversification [13],
[14], (ii) binary-rewriting based diversity [15], and (iii) compile-
time based diversity [16]–[18]. Recently, a hybrid technique
combining rewriting and compilers was proposed [19].

Most of this research, however, focuses exclusively on
thwarting arbitrary code execution attacks—with earlier papers
focusing on preventing code injection (e.g., [20], [21]) and
later ones focusing on preventing code reuse attacks. A notable
exception is Crane et al.’s work on using dynamic diversity to
prevent timing-based cache side channels [22]. Also in 2015,
Rane et al. presented a way to use principles from obfuscation
to close side channels [23].

IV. MEMORY ALLOCATION DIVERSITY

MAD cooperates with existing memory managers, such as
the buddy allocator in Linux, but it does not depend on any
specific features or properties of a memory manager, i.e., it
would also work with a free-list-based memory management
system. Furthermore, MAD can work in the operating system’s
kernel space, i.e., it can handle both memory management
requests from the kernel and from user space.

Enumerating Memory Blocks. A memory manager may
provide a functionality that allows to enumerate memory blocks.
Such enumeration is enormously helpful for sparse-allocation
massaging, since it ensures that an attacker will be able to
process all memory eventually. Figure 1 illustrates this behavior

2



Horizontal
Diversity

A

Inverse Vertical CDiversity B Vertical
Diversity

Allocation caches CA,o Shadow caches CS,o

Order 0, CA,0 CS,0b0 b2 φ b5 ψ b7 b4 bu bx b3

Order 1, CA,1 CS,1b′0 b′1 b′2 b′3 b′4 b′5 b′6 b′7 B

Figure 2: Block Recycling = Horizontal + Vertical Diversity. Step A shows horizontal diversity, i.e., moving blocks from a
shadow cache to the corresponding allocation cache. Step B shows vertical diversity, where found buddy blocks b3 and b4 in
shadow cache CS,0 will be merged into block B and put at a random location of the shadow cache of order CS,1. Step C
shows inverse vertical diversity, where randomly selected block b′1 of order 1 in CA,1 is split up into two blocks of order 0,
block φ and block ψ, which will be put at random locations in CA,0.

on the left-hand side, which shows an allocation sequence
and its predictable behavior under memory massaging in a
memory manager, a buddy allocator in this case. Subsequent
allocations return different blocks φ and ψ. On the right-
hand side of Figure 1, however, we see how MAD uses so-
called block recycling to ensure that the second call, with
high likelihood, returns the same page φ. Put differently, to
break enumeration and thus delay sparse-allocation massaging,
MAD increases the block recycling frequency across multi-
ple allocation and free requests. To this end, MAD applies
two complementary, mutually-beneficial, spatial diversification
techniques, horizontal and vertical diversity.

Horizontal Diversity. The goal of block recycling is to
ensure that allocation sequences, i.e., a sequence of alloc,
free, alloc calls, operate on the same physical blocks
to the maximum possible extent. MAD implements a spatial
diversification technique that we call horizontal diversity (see
step A in Figure 2), by using two sets of caches:

• allocation caches (CA), which serve allocation requests;
• shadow caches (CS), which hold freed blocks.

Both allocation and shadow caches exist for all block orders
of a buddy allocator, which is shown in Figure 2 as a second
label in the subscript, e.g., CA,0 denotes the allocation cache
of order zero, and CS,3 denotes the shadow cache of order
three.

We use the example from Figure 1 to describe our im-
plementation. Assume both allocation requests (alloc) as
well as the intermediate free request use order zero. Both
allocations will therefore obtain blocks cached in CA,0, whereas
the free will put the block (page p) into the shadow cache
CS,0. When an allocation cache becomes empty, we refill this
allocation cache by moving blocks from the corresponding
shadow cache of the same order back to the allocation cache—
thus horizontal diversity. Both allocations in our example will,
therefore, only ever operate on the blocks cached in CA,0. To
avoid predictability, allocation and free requests are randomized,
i.e., MAD fetches a random block from the allocation cache
with the proper order. Conversely, a free request will put the
block at a random position in the corresponding shadow cache.

All by itself, horizontal diversity suffers from the following

downside. When the adversary allocates n + 1 pages from
an allocation cache of size n, the allocation request has to
be served from the underlying memory manager. As a result,
horizontal diversity by itself would merely delay—but not
prevent—enumeration. A separate technique, vertical diversity,
is required to address this problem.

Vertical Diversity. The objectives of vertical diversity are
as follows: (i) provide high utilization to avoid the need for
allocating pages from the underlying memory manager, (ii)
provide an alternative, safe way to refill allocation caches,
(iii) avoid determinism and predictability through randomiza-
tion. To achieve these objectives, MAD uses the following
complementary two techniques.

To maximize cache utilization, MAD uses vertical diversity
(see step B in Figure 2), which proactively looks for buddy
blocks in a shadow cache of a given order (e.g., CS,0 in
Figure 2). Found buddies will be merged and put at a random
location in the next higher order (e.g., CS,1 in Figure 2).

To refill an empty allocation cache when the corresponding
shadow cache is also empty, MAD uses inverse vertical diversity.
Step C in Figure 2 shows an example of inverse vertical
diversity in action. To refill allocation cache CA,0, MAD
randomly selects a block in a higher order (CA,1 in Figure 2),
splits it up into two blocks, and puts those two blocks at
random locations in CA,0.

Since horizontal diversity moves blocks from a shadow cache
to the corresponding allocation cache, the combination of both
diversification techniques ensures that benign block allocations
and corresponding frees will result in maximum utility and
block recycling.

Initialization and Refilling. MAD interacts with the un-
derlying memory manager in the following three situations.
First, MAD needs to initialize its own caches when the system
becomes active, i.e., during boot or browser startup. Second,
MAD needs to be refilled when its caches become empty, as
this situation prevents vertical diversity. To refill its caches,
MAD obtains pages from the underlying memory manager (e.g.,
the buddy allocator in Linux). Third, MAD needs to drain its
shadow caches when they are full and there is no space left to
put freed blocks. This situation happens, e.g., when a program

3



frees a lot more blocks than can be held in the shadow cache. To
this end, MAD returns pages to the underlying memory manager.
If one of these steps is performed in a deterministic fashion,
MAD would suffer from the penalty of predictability, as the
attacker could create an advantageous adversarial configuration
to “feed” MAD. To address this penalty, MAD randomizes all
three steps.

Besides diversification of memory blocks managed and
cached by MAD, one could also consider physical properties,
such as spatial locality. One could, for example, maximize the
number of memory blocks from different DRAM banks. On
the one hand, such spatial concerns for initializing and refilling
MAD’s caches would increase its capability to deter ongoing
attacks. On the other hand, however, specific information about
DRAM internals are scarce, and to some extent such placement
impair vertical diversity. A compromise between both would
be to couple such spatial placement with increasing memory
pressure, such that a dense attack would be increasingly harder
to perform, as the attacker allocates more memory. Similar
adaptive methods have been proposed before in diversity [16]
and optimization [24]–[26].

Diversified Thresholds. The exact cache state triggering
either horizontal or vertical diversity needs further consideration.
Assume that an attacker knows, e.g., both the lower and
upper threshold of elements in the cache are identical and
configured as t. The attacker could then create a configuration
of allocation caches where the number of elements in each
order CA,i is t+1 and the corresponding shadow caches CS,i

are empty. By allocating a single block in the lowest order, i.e,
order zero, the attacker triggers both horizontal and vertical
diversity, in addition to a complete refill of the allocation caches.
MAD prevents an attacker from creating such an adversarial
configuration by diversifying both lower and upper bound
thresholds.

Conceptual Detection of Dense-Allocation Massaging.
Dense-allocation massaging means that the adversary coopts the
memory management system to act on its behalf. If the attacker
holds a vulnerable configuration, exhausts all memory, frees the
target page, and forces the operating system to allocate sensitive
data to the target location, then their privilege escalation attack
will succeed.

Besides deterring such attacks, MAD’s use of caches creates
novel ways of detecting dense-allocation massaging. Through
the lens of the caches, dense memory allocation manifests
itself through an increased frequency of asymptomatic MAD
configurations. If an attacker exhausts all allocation caches and
never frees any pages, then both sets of caches—allocation and
shadow caches—will be empty, requiring a refill. Conversely,
if the attacker holds a lot of memory and needs to free it, then
the allocation caches will be filled. Once the shadow caches
are full, MAD will hand all additional memory back to the
underlying memory manager. When compared to just tracking
and analyzing what happens in the memory allocator itself,
MAD’s restriction to a smaller memory area managed through
its caches effectively acts as a signal booster. As a result, a
dense memory allocation attack will raise a lot of alarm signals.

105 106 107 108 109

Allocations

10.0k

20.0k

30.0k

40.0k

50.0k

60.0k

70.0k

Un
iq

ue
 p

hy
sic

al
 p

ag
e 

fra
m

es
 a

llo
ca

te
d

Allocation strategy
MAD
No MAD

Figure 3: Comparison of MAD with a textbook buddy allocator
under sparse-allocation massaging.

A possible response by an attacker could be to interleave
malicious dense allocation with periods of “fake” benign
allocation patterns. To prevent such a maneuver, MAD collects
and analyzes multiple information sources. First, MAD collects
and measures the frequency of occurring asymptomatic con-
figurations. Second, MAD uses diversified snapshot intervals,
i.e., it analyzes its own caches every n allocations, where
n is a randomized interval. Since this snapshot collection
can be efficiently implemented, we can configure the random
snapshot interval to be low. In our experiments, for example,
we use a random number in the range [13, 997]. A prototypical
implementation of this technique detects virtually all dense-
allocation massaging (see column “Detection Rate” in Table I).

The outlined detection technique combines (i) high-resolution
monitoring of memory allocation activity with (b) principles
of software diversity to counter evasion attempts.

Generalization Although our discussion so far relied pri-
marily on cooperation with a buddy allocator in an operating
system, the core principles of MAD generalize to other
applications and memory managers. MAD sits on top of a
memory allocator and, therefore, does not require a buddy
allocator, but could also be combined with a much simpler
free-list memory-allocator. Furthermore, MAD is not tied to
any specific operating system internals and can be used in
any application that performs its own memory management,
such as web browsers, database systems, or virtual machines.
MAD segments memory into blocks of different order, but the
specific geometry can be tailored to an application’s specific
use case. In a web browser, for example, MAD could be used
to manage the JavaScript heap, thus deterring JavaScript-based
RowHammer attacks.

V. EVALUATION

A. Quantitative Security

This section details the results of the security experiments
to evaluate MAD. Specifically, we want to evaluate MAD’s

4



Min Q25 Q50 Q75 Max
Statistical Key Figures

0k

50k

100k

150k

200k

Bl
oc

k 
R

ec
yc

lin
g 

Fr
eq

ue
nc

y System
MAD
No MAD

Figure 4: Comparison of block recycling frequency of MAD
with a textbook buddy allocator. Statistical key figures cor-
respond to minimum, maximum and quartiles of number of
unique block allocations, i.e., number of allocations per memory
block number.

efficiency at preventing sparse-allocation massaging.
We evaluated the efficiency of MAD by massaging memory

in a randomized fashion, inspired by memory chasing. We
measured the amount of unique physical memory blocks
obtained when running one billion memory allocations against
both a textbook buddy allocator and MAD, at intervals of 25,000
allocations. The results of this experiment are shown in Figure 3.
Note the salient point of MAD showing a plateau of unique
physical blocks allocated between 100 million and 1 billion
allocations. Put differently, for over 900 million allocations,
MAD did not yield substantially more blocks.

To quantify the attrition rate of unique physical blocks per
number of allocations, we computed the difference in number
of unique physical blocks allocated per 100,000 allocations over
the 1 billion allocations measured. On average, MAD’s attrition
rate is 0.3563 unique physical blocks per 25,000 allocations.
Our baseline buddy allocator’s attrition rate is 1.4832 unique
physical blocks per 25,000 allocations. MAD improves the
attrition rate by a factor of 4.16×.

Extrapolated on the 4 million physical memory blocks
present in a system with 16 GB of memory, complete
enumeration of all memory blocks without MAD would require,
on average, about 77 billion allocations. Using MAD, this
number of allocations increases by an order of magnitude to
an average of 294 billion allocations.

Figure 4 shows the different block recycling frequencies of
MAD vs. our buddy allocator. Figure 3 indicates that after
a billion allocations we have merely allocated about 70,000
of a total of about 4 million blocks. Figure 4 shows that
the majority of blocks in minimum, first and second quartile
is zero, meaning that most memory blocks of the system
have not been allocated at all. The significant increase in
block recycling frequencies manifests itself in the third quartile
and the maximum, meaning that some memory blocks were
allocated much more frequently than others. We find that the
maximum block recycling frequencies between MAD and the
buddy allocator differ by a factor of four.

B. Probability of Success Under Worst Case Assumptions
A worst case assumption for MAD is when an attacker

succeeds to get control over the blocks required to perform

Alloc. Size Required Alloc. Detection

LB UB Average Median Rate

4 8 597,301 112,916 98%
8 16 565,959 70,065 100%

16 32 418,565 37,858 100%
32 64 278,490 30,729 100%
64 128 255,154 39,563 98%

Table I: Number of required allocations to obtain a vulnerable
configuration assuming the attacker succeeded in placing a
page into MAD. LB and UB indicate lower and upper bounds
used for memory allocation size.

RowHammer, and manages to let MAD allocate the memory
at the target location. Due to randomizing initialization and
refilling (see Section IV), we were not able to put a specific
block into MAD’s allocation caches and, therefore, had to resort
to choose a random block of order six and designate it as a
vulnerable page. Recall that MAD is hardware agnostic, and
does not actually carry any specific information about physical-
to-DRAM address mapping. Without loss of generality, we
assume that a vulnerable block configuration, i.e., a vulnerable
block and its logical neighbors, is determined solely by their
physical block numbers.

We evaluated MAD’s deterrence by measuring the number
of allocations required to obtain a vulnerable configuration.
Table I contains our results, including averages and medians
over 50 repetitions. Note that the average and median number of
required allocations differ substantially. This difference is due
to the probabilistic nature of MAD: sometimes pages required
for an attack get moved to a shadow cache or recycled to
higher orders via vertical diversity.

The probability of success varies with the lower and upper
bounds used to allocate memory blocks and ranges between
less than 0.3% and less than 0.01%. As a result, more than
99.5% of the times, an adversary will not succeed to predictably
force allocation into the target location.

C. Implementation Complexity

We have implemented MAD in Python (i) to guide the
search for optimal parameters that, e.g., determine the sizes of
allocation and shadow caches, and (ii) to create heat-map videos
of the overall memory, and videos showing the internal state of
MAD’s allocation caches. The resulting Python implementation
uses roughly a thousand lines of code.

VI. RELATED WORK

Since Kim et al. discovered the RowHammer vulnerability
in 2014, research communities in various fields published a
plethora of papers on RowHammer. Mutlu et al. provide an
extensive review over the state-of-the-art [27].

Prior work has proposed several defenses to protect sys-
tems against RowHammer attacks without requiring hardware
replacement. These defenses either only protect against at-
tacks targeting specific memory areas or critically depend on
knowledge about the deployed DIMMs. None of these defenses,

5



furthermore, prevent many-sided RowHammer or would require
prohibitive amount of memory to do so.

1) Kernel and User Space Separation: G-CATT [28] physi-
cally separates memory in at least two areas: a kernel area and
a user-space area. Conceptually, this approach prevents attacks
targeting kernel space, but it cannot protect against attacks that
induce bit flips in user space. Gruss et al. presented opcode
flipping, an attack exploiting bit flips in user space mapped
binaries, such as sudo [8]. Furthermore, Cheng et al. showed
that G-CATT cannot fully protect against attacks targeting
double-owned kernel buffers [29].

2) Defenses Based on Memory Layout: ZebRAM [30] and
ALIS [31] use unsafe regions and guard rows, respectively.
For that purpose, they require knowledge about the physical-
to-DRAM address mapping, which is generally not published
by the vendors—some reverse engineered documentation is
available [31]–[35].

GuardION [36] effectively prevents RowHammer attacks
on Android devices by inserting so-called guard pages before
and after contiguous direct memory access (DMA) memory
regions. However, on other popular architectures (such as x86)
attackers can row hammer without direct uncached memory
access [1]–[3], [5], [8], [9], [33].

Wu et al. use monotonic pointers [37] to protect page tables
from RowHammer attacks and thus cannot protect other targets.
In addition, defenders need to know vulnerable memory cells
and their flip direction in advance.

3) Defenses Preventing Bit Flips: ANVIL [33] effectively
prevents RowHammer bit flips triggered by software by
refreshing physically neighboring memory cells of a potential
victim cell if row hammering is detected. ANVIL relies on
the Intel Performance Counter Monitor [38], which is not
accurate enough for security critical applications [39], as well
as knowledge about the inner, hard-wired chip design of the
memory modules.

B-CATT [40] prevents the operating system from using
blocks vulnerable to row hammering. B-CATT blacklists
vulnerable blocks during boot time, which can thus increase
significantly—attackers can still use bit flips undetected by
B-CATT. Since many memory modules have one bit flip per
page, the entire memory has to be blacklisted [6], [8], [34].

VII. CONCLUSIONS & FUTURE WORK

No known defense mitigates the more recently discovered
many-sided RowHammer attacks. Based on previous years and
ongoing developments, it is unlikely that we, as a community,
know all the facets and relevant details of how RowHammer
and, more generally, DRAM attacks will evolve. In light of
these developments, early defenses that focused on identifying
and/or isolating aggressor from victim rows fail to generalize
from double-sided to many-sided RowHammer. The principle
of isolation is doomed, as it would require much more memory
to scale from double-sided to many-sided RowHammer attacks,
resulting in prohibitive expensive memory requirements.

MAD presents a new research direction that brings ideas
underlying software diversity to the idea of mitigating Row-

Hammer attacks in memory management components. As is
true for all other defenses using software diversity, MAD offers
probabilistic security, i.e., a brute-force attack will succeed
eventually. To protract the time required for such a brute-
force attack, MAD combines horizontal and vertical diversity,
and our preliminary data provides promising evidence of
MAD’s protraction capabilities. Besides protracting attacks,
an operating system using MAD may also be able to leverage
the uncertainty introduced to detect attacks. If, for example,
a RowHammer attack intends to escalate privileges and MAD
does not put the expected data into the target location, the attack
will manipulate other data and a subsequent access requiring
higher privileges will fail.

MAD does not require specific hard- or software information
to operate. This conceptual simplicity is also beneficial when
going from one- or double-sided to many-sided RowHammer
attacks: From the perspective of MAD, it does not matter
how many rows an attacker needs, and since a many-sided
RowHammer attack requires control of more rows, MAD’s
deterrence may actually also be more effective.

Based on the encouraging evidence, a more thorough
investigation of MAD is warranted. We plan on implement-
ing MAD in an operating system and a web browser, and
subsequently evaluate MAD’s protective properties against all
known RowHammer attacks. We also believe that a hybrid
technique that combines MAD with another, stronger but
more expensive defense holds potential to mitigate attacks.
Besides examining real-world attacks, we plan on investigating
a variety of properties of MAD’s probabilistic caches, such as
fragmentation, detection, and steady cache states.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers who pro-
vided invaluable feedback that improved the paper considerably.
This paper has been partly supported by two Austrian Federal
Ministries (BMK and BMDW), and the Province of Upper
Austria in the frame of the COMET center SCCH, grant no.
FFG-865891. Parts of the research have been financed by
research subsidies granted by the Province of Upper Austria in
the project DEPS Pilot. This project has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 830927.

REFERENCES

[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping Bits in
Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in Proceeding of
the 41st Annual International Symposium on Computer
Architecuture (ISCA), 2014.

[2] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O.
Mutlu, C. Giuffrida, H. Bos, and K. Razavi, “TRRespass:
Exploiting the Many Sides of Target Row Refresh,” in
IEEE Symposium on Security and Privacy (S&P), 2020.

6



[3] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida,
and K. Razavi, “SMASH: Synchronized Many-sided
Rowhammer Attacks from JavaScript,” in 30th USENIX
Security Symposium (USENIX Security), 2021.

[4] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos,
“Exploiting Correcting Codes: On the Effectiveness of
ECC Memory Against Rowhammer Attacks,” in IEEE
Symposium on Security and Privacy (S&P), 2019.

[5] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript,”
in Proceedings of the 13th International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2016.

[6] V. van der Veen, Y. Fratantonio, M. Lindorfer, D.
Gruss, C. Maurice, G. Vigna, H. Bos, K. Razavi, and
C. Giuffrida, “Drammer: Deterministic Rowhammer
Attacks on Mobile Platform,” in Proceedings of the 23rd
Conference on Computer and Communications Security
(CCS), Oct. 2016.

[7] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida,
and H. Bos, “Flip Feng Shui: Hammering a Needle in the
Software Stack,” in 25th USENIX Security Symposium
(USENIX Security), 2016.

[8] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom, “Another
Flip in the Wall of Rowhammer Defenses,” in IEEE
Symposium on Security and Privacy (S&P), 2018.

[9] M. Seaborn and T. Dullien. “Exploiting the DRAM
rowhammer bug to gain kernel privileges.” (Mar. 2015),
[Online]. Available: https://googleprojectzero.blogspot.
com/2015/03/exploiting- dram- rowhammer- bug- to-
gain.html.

[10] F. Cohen, “Operating System Protection Through Pro-
gram Evolution,” Computers and Security, Oct. 1993.

[11] M. Franz, “E unibus pluram,” in Proceedings of the
2010 New Security Paradigms Workshop (NSPW ’10),
2010.

[12] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz,
“SoK: Automated Software Diversity,” in IEEE Sympo-
sium on Security and Privacy (S&P), 2014.

[13] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser,
J. C. Knight, and A. Nguyen-Tuong, “Security through
Diversity: Leveraging Virtual Machine Technology,”
IEEE Security & Privacy Magazine, vol. 7, no. 1, 2009.

[14] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson, “ILR: Where’d My Gadgets Go?” In IEEE
Symposium on Security and Privacy (S&P), 2012.

[15] V. Pappas, M. Polychronakis, and A. D. Keromytis,
“Smashing the Gadgets: Hindering Return-Oriented Pro-
gramming Using In-place Code Randomization,” in IEEE
Symposium on Security and Privacy (S&P), 2012.

[16] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and
M. Franz, “Profile-guided automated software diversity,”
in Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization
(CGO), 2013.

[17] A. Homescu, T. Jackson, S. Crane, S. Brunthaler, P.
Larsen, and M. Franz, “Large-scale Automated Software
Diversity–Program Evolution Redux,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 14,
no. 2, 2017.

[18] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz, “Readactor:
Practical Code Randomization Resilient to Memory
Disclosure,” in IEEE Symposium on Security and Privacy
(S&P), 2015.

[19] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M.
Polychronakis, “Compiler-assisted Code Randomization,”
in IEEE Symposium on Security and Privacy (S&P),
2018.

[20] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Ste-
fanovic, and D. D. Zovi, “Randomized Instruction Set
Emulation to Disrupt Binary Code Injection Attacks,” in
Proceedings of the 10th ACM Conference on Computer
and Communication Security (CCS), 2003.

[21] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Coun-
tering Code-Injection Attacks With Instruction-Set Ran-
domization,” in Proceedings of the 10th Conference on
Computer and Communications Security (CCS), 2003.

[22] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M.
Franz, “Thwarting Cache Side-Channel Attacks Through
Dynamic Software Diversity.,” in 22nd Annual Network
and Distributed System Security Symposium (NDSS),
2015.

[23] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing
Digital Side-Channels through Obfuscated Execution,”
in 24th USENIX Security Symposium (USENIX Security),
2015.

[24] S. Brunthaler, “Inline caching meets quickening,” in
ECOOP 2010 - Object-Oriented Programming, 24th
European Conference, Maribor, Slovenia, June 21-25,
2010. Proceedings, T. D’Hondt, Ed., ser. Lecture Notes
in Computer Science, vol. 6183, Springer, 2010, pp. 429–
451.

[25] W. Zhang, P. Larsen, S. Brunthaler, and M. Franz,
“Accelerating iterators in optimizing AST interpreters,” in
Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2014, part of SPLASH 2014,
Portland, OR, USA, October 20-24, 2014, A. P. Black
and T. D. Millstein, Eds., ACM, 2014, pp. 727–743.

[26] M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and
M. Franz, “Accelerating dynamically-typed languages on
heterogeneous platforms using guards optimization,” in
32nd European Conference on Object-Oriented Program-
ming, ECOOP 2018, July 16-21, 2018, Amsterdam, The
Netherlands, T. D. Millstein, Ed., ser. LIPIcs, vol. 109,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, 16:1–16:29.

[27] O. Mutlu and J. S. Kim, “RowHammer: A Retrospec-
tive,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2019.

7

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


[28] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R.
Sadeghi, “CAn’T Touch This: Software-only Mitigation
Against Rowhammer Attacks Targeting Kernel Memory,”
in Proceedings of the 26th USENIX Conference on
Security Symposium (USENIX Security), 2017.

[29] Y. Cheng, Z. Zhang, and S. Nepal, “Still Hammerable
and Exploitable: on the Effectiveness of Software-only
Physical Kernel Isolation,” CoRR, 2018.

[30] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse,
H. Bos, C. Giuffrida, and K. Razavi, “ZebRAM: Com-
prehensive and Compatible Software Protection Against
Rowhammer Attacks,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2018.

[31] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida,
H. Bos, and K. Razavi, “Throwhammer: Rowhammer
Attacks over the Network and Defenses,” in USENIX
Annual Technical Conference (USENIX ATC), 2018.

[32] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S.
Mangard, “DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks,” in 25th USENIX Security
Symposium (USENIX Security), 2016.

[33] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks,
Y. Oren, and T. Austin, “ANVIL: Software-Based Protec-
tion Against Next-Generation Rowhammer Attacks,” in
Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2016.

[34] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One
Bit Flips, One Cloud Flops: Cross-VM Row Hammer
Attacks and Privilege Escalation,” in 25th USENIX
Security Symposium (USENIX Security), 2016.

[35] M. Wang, Z. Zhang, Y. Cheng, and S. Nepal,
“DRAMDig: A Knowledge-assisted Tool to Uncover
DRAM Address Mapping,” in Proceedings of the
57th ACM/EDAC/IEEE Design Automation Conference
(DAC), 2020.

[36] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P.
Pillai, G. Vigna, C. Kruegel, H. Bos, and K. Razavi,
“GuardION: Practical Mitigation of DMA-based Row-
hammer Attacks on ARM,” in Proceedings of the 15th
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), Jun. 2018.

[37] X.-C. Wu, T. Sherwood, F. T. Chong, and Y. Li,
“Protecting Page Tables from RowHammer Attacks Using
Monotonic Pointers in DRAM True-Cells,” in Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[38] T. Willhalm, R. Dementiev, and P. Fay. “Intel® Per-
formance Counter Monitor - A Better Way to Measure
CPU Utilization.” (Jan. 2017), [Online]. Available: https:
//software.intel.com/en-us/articles/intel-performance-
counter-monitor.

[39] S. Das, J. Werner, M. Antonakakis, M. Polychronakis,
and F. Monrose, “SoK: The Challenges, Pitfalls, and
Perils of Using Hardware Performance Counters for
Security,” in IEEE Symposium on Security and Privacy
(S&P), 2019.

[40] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.
Sadeghi, “CAn’t Touch This: Practical and Generic
Software-only Defenses Against Rowhammer Attacks,”
CoRR, 2016.

8

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

	Diversity meets RowHammer
	Threat Model and Assumptions
	Background
	Memory Allocation Diversity
	Evaluation
	Quantitative Security
	Probability of Success Under Worst Case Assumptions
	Implementation Complexity

	Related Work
	Kernel and User Space Separation
	Defenses Based on Memory Layout
	Defenses Preventing Bit Flips


	Conclusions & Future Work

