Panopticon: A Complete In-DRAM
Rowhammer Mitigation

Tanj Bennett®, Stefan Saroiu, Alec Wolman, and Lucian Cojocar
Microsoft, $Avant-Gray LLC

Abstract—The shortcomings of previous Rowhammer mitiga-
tions prevent their adoption in practice. Their implementations
either need significant amounts of fast memory, such as CAM
or SRAM, or require changes across multiple hardware and
software layers. Panopticon is a complete in-DRAM Rowhammer
mitigation that is both inexpensive and, for DDR4, requires no
changes to any hardware components other than DRAM. Panop-
ticon uses a novel DRAM mat design to implement counters and
the DRAM’s row decoding logic to access the row’s corresponding
counter. Finally, for DDR4, Panopticon leverages ALERT,, to
stop a memory controller from issuing new DRAM commands
whenever it needs time to refresh potential victim rows.

I. INTRODUCTION

Rowhammer remains a significant threat to DRAM’s se-
curity and reliability. Despite memory vendors’ claims that
DDR4 is “Rowhammer free” and that Rowhammer attacks
are “a thing of the past” [23], [10], [20], DDR4 DRAM is
in fact more vulnerable than DDR3 [15], [6]. While DDR4
is resilient to older forms of attack that access one or two
DRAM rows, DDR4 succumbs to multi-row-based attacks [6],
[29]. Rowhammer affects all forms of DRAM and not just
DDR; for example, LPDDR4 has been also shown to be vul-
nerable [28], [6]. Nearly a decade after the first Rowhammer
publication [18], DRAM remains as vulnerable as ever.

The current situation is not due to a lack of research in ad-
dressing Rowhammer. The research community has proposed
many mitigation schemes that ensure data located in victim
rows is safe from Rowhammer [18], [8], [14], [1], [12], [42],
[91, [31], [33], [26], [30], [21], [22], [3], [32], [19], [34], [4],
[24], [36], [37], [44], [2], [40], [7], [17], [27], [45], [41], [25].
Unfortunately, none of these research proposals are widely
deployed yet, for two main reasons. First, they come with
significant cost and performance downsides. For example, to
implement Graphene [27], a state-of-the-art tracking proposal,
a DDR4 memory controller requires an additional 39.23KB
of CAM memory per channel. Modern server-grade CPUs
are equipped with quad-channel memory controllers [38]
resulting in a total of 160KB of CAM memory, an amount
that would significantly increase cost and power consumption.
TWiCe [21], [22], an alternative tracking scheme, implements
tracking inside the RCD chip on a DIMM. This requires a
drastic redesign of the RCD chip while leaving DRAM lacking
RCD (e.g., unbuffered memory) vulnerable. Similarly, memory
partitioning schemes [3], [19], [34], [2], [40], [25] and new
forms of DRAM [42], [30], [7] while promising also have
significant shortcomings.

A second practical barrier is requiring changes at multiple
hardware or software layers. For example, in addition to
equipping a memory controller with significant amount of
extra CAM memory, Graphene [27] requires DRAM to support
a new command, called Nearby Row Refresh, that the memory

controller uses to instruct DRAM to refresh both rows adjacent
to an aggressor row. Costly changes across multiple layers are
difficult to implement in practice. Incurring this cost is justified
only when all stakeholders perform the changes necessary to
enable the Rowhammer mitigation. This requires overcoming
a challenging first step: hardware and software vendors must
first reach consensus on the “right” Rowhammer mitigation.
Unfortunately, this situation raises an instance of Prisoner’s
Dilemma [39] making it difficult for DRAM vendors, CPU
vendors, and software companies to cooperate.

This paper presents Panopticon!, a complete Rowhammer
mitigation that is both inexpensive and, in the case of DDR4,
requires no changes to any hardware components other than
DRAM. Panopticon monitors all row activations inside the
DRAM itself. Unlike previous tracking schemes that store
counters in expensive forms of memory, such as CAM or
SRAM, Panopticon’s counters are stored in thin 16-bit wide
mats co-located with the DRAM mats. Panopticon uses an
open-space, staggered mat design for storing counters that
leaves ample space for the counter increment and test logic.
Unlike prior work, Panopticon does not need to implement
a separate counter lookup circuit; instead, it re-uses DRAM’s
row decoding logic to access the counter for the activated row.

Each DRAM row is equipped with its own counter. When a
counter reaches the Rowhammer threshold, a signal is sent to
a service queue to enqueue the row address. Once enqueued,
Panopticon must refresh potential victim rows in a timely
manner to avoid the possibility of Rowhammer bit flips. One
option is to provide extra time for mitigations during regular
background refresh operations. With this design, Panopticon
can service the queue when it receives a REF command (each
tREFI). However, should the DRAM have no extra time or
should the queue be full, the DRAM must find a way to
signal the memory controller that it needs time to perform
the Rowhammer remedies. Unfortunately, DRAM protocols
do not specify a way for the DRAM to ask for free time.

Panopticon retrofits an existing signal in the DDR4 spec-
ification, called ALERT,,, to effectively “trick” the memory
controller to pause issuing new DDR commands. DRAM uses
ALERT,, to signal errors to the memory controller. Upon
receiving this signal, the memory controller stops issuing
new DRAM commands and instead re-issues the old memory
access. By making use of ALERT,,, Panopticon requires no
modifications to any hardware other than DRAM itself.

II. PRIOR PROPOSALS FACE PRACTICAL HURDLES

Prior Rowhammer mitigation proposals face hurdles that
make them expensive and unsuitable for adoption in practice.

IFor an open-source implementation of Panopticon see: https:/github.com/
microsoft/Panopticon.

https://github.com/microsoft/Panopticon
https://github.com/microsoft/Panopticon

Most previous approaches can be classified in four categories:
e Tracking approaches. These approaches track microar-
chitectural events associated with Rowhammer to detect an
ongoing attack before it has a chance to succeed.

e Sampling approaches. These approaches randomly sample
microarchitectural events associated with Rowhammer. They
proactively perform a Rowhammer mitigation on each sample.
o Partitioning approaches. These approaches compartmen-
talize memory and isolate an adversary from other co-located
potential victims. When memory is properly compartmental-
ized, a Rowhammer attack in one memory perimeter cannot
affect co-located potential victims.

e Clean slate approaches. These approaches require sig-
nificant changes to the memory hardware including DRAM
fabrication technology, DRAM devices, or DIMMs. The fun-
damental nature of these changes eliminate the threat of
Rowhammer by design.

A. Tracking Approaches

Many previous mitigations track microarchitectural events
associated with Rowhammer whether DRAM row activa-
tions [11], [8], [14], [31], [33], [26], [21], [22], [32], [4], [24],
[36], [37], [44], [27], [41], cache misses [1], or a combination
of both [12]. Whenever such events occur at a high rate, these
schemes perform a corrective action, such as refreshing victim
rows or throttling aggressor rows. Since a Rowhammer attack
discharges a victim row’s capacitors, refreshing a victim row
before any of its bits flip effectively undoes the Rowhammer
leakage effects. An alternate approach is to throttle aggressor
rows until the DRAM had a chance to refresh itself (known
as an auto-refresh or background refresh) [41].

Tracking approaches are attractive because the mitigations
are performed only when the DRAM is in danger of bits
flipping due to Rowhammer. When the DRAM is not under
attack, which is the common case, the schemes avoid incurring
any mitigation overhead.

Unfortunately, prior tracking approaches have two short-

comings that prevent them from being adopted in practice.
1. Significant cost and performance overhead. Three recent
schemes have shown how to track an entire DRAM bank
using significantly less state than maintaining a counter per
row [41], [27], [22]. Despite their impressive state reduction,
the state required for all DRAM in a system is still very high
due to the large degree of bank parallelism found in DDR4
and DDRS5 DRAM. For example, a DDR4 channel in modern
high-performance servers (e.g., cloud servers) might have to
accommodate two DIMMs where each DIMM has four ranks
with 16 banks/rank. Although Graphene requires an astonish-
ingly small amount of state per bank (only 2,511 bits/bank for
DDRA4), this state adds up to 2,511 x 2 x 4 x 16 = 321,408
bits or 39.23 kilo-bytes for a DDR4 channel. This analysis
assumes a Rowhammer threshold of 50K row activations that
we regard as optimistic. Recent work has shown that newer
DDR4 DRAM has even lower Rowhammer thresholds [15].

BlockHammer [41] and TWiCe [22] both require more per-
bank state than Graphene: 13,312 bits/bank for BlockHammer
(1024 13-bit counters [41]) and 22,200 bits/bank for TWiCe
(or 2.71KB [22]). Table I summarizes these schemes’ state
sizes. All other tracking schemes either require more state, or,
when they do not, their Rowhammer protection is incomplete.

TABLE I
STATE SIZE OF THREE STATE-OF-THE-ART ROWHAMMER MITIGATION
SCHEMES. A DDR4 CHANNEL HAS UP TO 128 BANKS, AND A MODERN
SERVER-GRADE CPU HAS UP TO 4 CHANNELS.

Per-Bank Per-Channel Per-CPU

(bits) (kilo-bytes) (kilo-bytes)

Graphene [27] 2,511 39.23 156.9
BlockHammer [41] 13,312 208.00 832.0
TWiCe [22] 22,200 346.88 1,387.5

These previous approaches use CAM or SRAM memory to
store their counter tables. Panopticon sidesteps this overhead
by storing each row counter in the DRAM row itself. Lookup
is essentially free because it leverages DRAM’s internal row
decoding logic. When a row is activated, counter increments
occur in parallel with the sensing and amplifying of the
DRAM row. Section V will describe the internal DRAM layout
Panopticon uses for counters.

CRA [14] is an earlier scheme that, like Panopticon,
maintains a row activation counter for each row in DRAM.
However, unlike Panopticon, CRA carves a separate portion of
DRAM for storing all row counters. CRA effectively doubles
memory access latencies; to reduce this concern, CRA equips
the memory controller with a small SRAM-based cache of
recently accessed counters. Another prior work equips DRAM
with a detector that tracks aggressor rows [11].

2. Require changes at multiple layers.

Most tracking schemes store their counter tables outside of
the DRAM device, either in the memory controller [41], [27]
or in the RCD [22]. Unfortunately, such approaches preclude
the ability to refresh victim rows without the cooperation of
the DRAM device. By tracking aggressor rows, these schemes
cannot identify the affected victim rows unless they have
visibility into the DRAM’s internal physical row mappings.

Unfortunately, DRAM vendors regard internal row layout
(and the mappings of logical to physical DRAM rows) as
proprietary and confidential [5], and are unwilling to share
them even when they could help with mitigating Rowhammer.
Instead, prior works propose a new DRAM command, called
Nearby Row Refresh [27] or Adjacent Row Refresh [22] by
which the memory controller reports an aggressor row’s ad-
dress and instructs the DRAM to refresh all potential victims.

Requiring changes at multiple layers makes tracking
schemes difficult to adopt in practice without the cooperation
of all stakeholders. For example, a CPU vendor is reluctant
to incur a tracking scheme’s cost and performance overhead
until all three major DRAM vendors implement Nearby Row
Refresh. Similarly, a single DRAM vendor is also reluctant
implementing Nearby Row Refresh until this command is stan-
dardized in JEDEC and supported by other DRAM vendors.

BlockHammer [41] is an earlier scheme that shares Panop-
ticon’s goal of avoiding changes at multiple hardware layers.
BlockHammer can be implemented entirely in the memory
controller with no changes to DRAM internals. However,
BlockHammer still requires significant amounts of SRAM.

B. Sampling Approaches

An alternative to tracking is sampling: upon each row
activate (or other microarchitectural event associated with
Rowhammer), with a low probability p, treat the row as an

aggressor row [18], [14]. The lack of storing and managing
counters makes sampling have two important benefits over
tracking: statelessness and simplicity.

Unfortunately, all prior sampling approaches implement
their logic in the memory controller and suffer from the same
drawback of requiring DRAM vendors to share their propri-
etary, internal row layouts. We are unaware of a prior sampling
approach done in DRAM only. Such an implementation would
need a way to generate random numbers because, to be secure,
sampling must be done randomly. Generating random numbers
in DRAM is expensive and intrusive although recent work has
shown new promising avenues [16].

Another drawback of sampling is that Rowhammer mitiga-
tion is always active. Unlike tracking, sampling cannot distin-
guish between an adversarial and a normal system workload.

C. Fartitioning Approaches

Partitioning approaches [3], [19], [34], [2], [40], [25] con-
fine an attacker to a memory perimeter (or memory security
domain) that cannot interfere with the perimeters of other
potential victims in the DRAM. An intuitive form of isolation
is the physical partition of memory together with adding guard
rows (i.e., rows that do not store any data) between different
memory perimeters to ensure that the rows in one perimeter
are sufficiently far from another perimeter. This distance
guarantees that memory accesses in one domain cannot affect
the rows in a neighboring domain.

The main difficulty with partitioning rises from the mis-
match between data addressing done by the DRAM vs. the
CPU. In DRAM partitioning approaches, the data unit is a
DRAM row. A row contains data from multiple CPU cache-
lines not guaranteed to be contiguous in the CPU physical ad-
dress space. In fact, for servers equipped with many DIMMs,
a single row of DRAM data holds cachelines from multiple
different physical pages. In such scenarios, row protection is
a poor abstraction because it means protecting an arbitrary set
of cachelines found on an arbitrary set of physical pages.

D. Clean Slate Approaches

Researchers are investigating new DRAM that minimize
Rowhammer rootcauses [35]. One approach is reducing
electro-magnetical coupling between nearby rows by intro-
ducing various forms of electron energy barriers between
cells [42], [7]. Another approach is minimizing the number
of electron traps [30]. Both electro-magnetical coupling and
electron traps have been shown to be rootcauses of Rowham-
mer [18], [43].

A different approach is using dummy weak cells that are
quick to flip (more susceptible to leakage) in DRAM. Such
cells can act as early warnings of an ongoing attack [9].

Finally, another clean-slate approach is a new RCD chip
with extra pins that remaps row addresses from one DRAM
device to another [17]. Unfortunately, such forms of address
scrambling do not stop Rowhammer but only raise the diffi-
culty of targeting an explicit victim row.

III. DESIGN GOALS

We designed Panopticon with the following goals in mind:

[Row # | 16-bit CNT | [Row 1 | 16-bit CNT | [Row i | 16-bit CNT |
0x0 Ox84FF 0x0 Ox84FF 0x0 0x8500
Ox1 OxE806 ACT 0x2 Ox1 0xE806 ACT 0x0 ox1 OxE806
ox2 Ox13FF ox2 0x1400 ox2 0x1400

0x3 Ox82EE 0x3
Service Q.

Ox82EE 0x3
Counter Table

Ox82EE

Counter Table Service Q. Counter Table

Fig. 1. Three consecutive states of the counter table and service queue. b1p
is the threshold bit.

1. Low cost. Panopticon should store all row counters in
DRAM and leverage DRAM’s row decoding logic to identify
the counter to increment on a row activation.
2. No changes to existing DRAM data mats and sense
amplifiers. For efficiency reasons, DRAM uses tall mats with
many DRAM rows. Sense amplifiers are tuned to reach the
farthest row in the mat with their drive during the amplification
phase. Unfortunately, the current DRAM design leaves no time
for an additional operation, such as incrementing a counter.
Two possibilities are (1) shortening the data mat sizes or
(2) increasing the power of sense amplifiers. Unfortunately,
both options impact DRAM design significantly, and as a
result have little chance to be deployed in practice. Instead,
Panopticon should make no changes to existing DRAM mats
and sense amplifiers.
3. No changes to the existing DDR4 protocol and memory
controllers. An important security requirement is to refresh
all potential victim rows in a timely manner. We believe, upon
receiving a refresh command (REF), some DRAM devices do
not make use of the entire allocated time (tRFC) to perform
background refresh. In such a case, the DRAM could use this
idle time to refresh potential victim rows if needed.
Nevertheless, we also expect well-tuned high-density
DRAM to have little opportunity for additional idle time
to service the queue. In such cases, DRAM needs to stop
the memory controller from issuing new DRAM commands.
Panopticon should perform this step without requiring changes
to existing DDR4 protocol or to the memory controller.

IV. HIGH-LEVEL OVERVIEW

Panopticon maintains a counter table in-DRAM where each
counter corresponds to a DRAM row and increments each time
the corresponding row is activated. Unlike previous schemes,
Panopticon does not maintain a Rowhammer threshold value,
but a threshold bit. Whenever this bit is toggled during a
counter increment, Panopticon enqueues the row address into
a service queue.

Figure 1 illustrates three consecutive states of the counter
table and service queue in a configuration where the threshold
bit is b1g (bg corresponds to the least significant bit), the
service queue has four entries, and the rows activated are row
0x2 and 0x0, respectively. In its initial state, by has a value
of 0 for row 0x2, and 1 for row 0x0. However, in each case,
an additional row activation foggles by, causing Panopticon to
enqueue each row address in the service queue, respectively.

Using a threshold bit rather than a value lets Panopticon
avoid having to reset its counters. While a trivial operation
when performed in SRAM, resetting a DRAM counter is ex-
pensive because it would require extra circuitry and additional
latency to clear each DRAM cell. Panopticon ensures that a
row is serviced every 2 activates, where i is the threshold bit
(e.g., i = 10 for byg).

Service Q.

[Row # | 16-bit CNT PRSPPI Rov # | 16-bit CNT
0x0 O0x8500 ————> o0 o0a0

Oox1 O0xE806 0x1 0xE806
0x2 0x1400
0x3 O0x82EE
Counter Table

* Refresh row 0x0
* Refresh row Ox1 0x2
* Refresh row 0x3 0x3

. * Refresh row 0x4
Service Queue

0x1400
Ox82EE
Counter Table

Fig. 2. Servicing row 0x2. DRAM row disturbance affects up to two nearby
rows on each side of an aggressor. Servicing a row requires refreshing four
potential victim rows.

Panopticon services rows from the queue when receiving
a REF command (if there is time), or by signaling the
memory controller to stop issuing new DRAM commands. To
service a row, Panopticon refreshes all potential victim rows.
DRAM vendors regard the number and identity of potential
victim rows in their DRAM as highly confidential. However,
with Panopticon, this information remains in the hands of
the DRAM vendors; they need to fine-tune Panopticon to
perform the correct remedy applicable to each DRAM device.
Figure 2 shows servicing row 0x2 in a configuration where
row disturbance affects up to two nearby rows on each side
of the aggressor (£2).

V. IN-DRAM ARCHITECTURE

Panopticon comprises of a set of narrow DRAM mats (i.e,
sub-arrays) to store counters, a small piece of logic for each
counter mat that increments and writes back the counters, and
a tiny state machine in each bank that implements a service
queue and the ALERT,, signaling.

A. Counter Mats

Panopticon needs to increment, update, and store row
counters without slowing down normal DRAM operations. A
design that lays out counter cells in a manner similar to the
DRAM data cells (i.e., the counters and the DRAM cells have
the same geometry) will introduce significant latency overhead
due to the additional time needed to read and store back the
counter value along the data lines. Instead, Panopticon uses an
open-space design that places the counter mat in a staggered
manner leaving space for the incrementer logic.

Sense amplifiers’ arrangement with full length mats in
today’s DRAM. Sense amplifiers bridge cell-mats and connect
to either the upper or lower data arrays depending on how the
DRAM circuit is activated. Mat selection is done using the
equalizer (EQ_a and EQ_b) and isolation (ISO_a and ISO_b)
signals. Panopticon must keep the same spacing for the sensing
and routing of the counter bits that run beside these full length
mats and use the same row lines. Figure 3 illustrates the sense
amplifiers layout between two cell mats above and below.
Counter mats design and layout. The counter mats in
Panopticon are half-length and support only half the number of
rows. Both a mat’s top and bottom have one-sided sense amps.
Halving the counter mats’ size has two important benefits.
First, the half-length data lines offer lower latency for counter
increments within the time needed to read the data cells.
Second, it creates a large open-space adjacent to the sense
amplifiers to place logic for an incrementer (and also for
testing). The location is ideal because it has access to all
process layers including interconnect to create the logic needed
for controlling and operating the incrementer.

Service Queue

Dual-sided Full-length cell mat
Sense Amp
N
1S0_a EQa
ACT
Data R IR IR IRIRIRIG IR IS, Le| e {® R
pata~ o] 1o o[1o B[B[[® [|4 |& | | (e 1o {fef
eof lof |e| |of (o] [¢] |®] [] |e] [¢] [¢] || [e]| || |®| |®
0 b NLAT
-] [I EQ b
[171 : EEE 1

Full-length cell mat

Fig. 3. Arrangement of sense amphﬁers with full length mats.

Incrementer

global ~
row lines

“m""|"|“""‘|‘“"‘I"“"H“N"““”"““”“ Incrementer

““ ““““““NNN““““‘ Incrementer

Not to scale

Incrementer

Incrementer

Incrementer

Incrementer

Incrementer

Lots and lots of cells between the edges

Fig. 4. Panopticon’s open-space design and staggered layout of counter mats.
The mats are half length leaving space for incrementer and testing logic.

The open-space design comes with a cost: a single counter
mat covers half the data rows only. To offer a complete set
of counters, Panopticon alternates (staggers) half the counter
mats left and the remaining half right such that each row of a
standard mat continues into a counter half-mat.

The open-space staggered layout leaves plenty of space for
incrementers. The incrementer logic is placed in the open
space next to both the upper and lower sense amps for short
distances and latencies. The row lines are not extended into
the open spaces that can be further extended to the outside if
more room for logic is needed. Figure 4 shows the staggered
layout of half length counter mats.

B. Incrementer

The incrementer makes use of the read and writeback cycle
inherent in DRAM row activation to perform its logic. A 16-
bit counter value is incremented each time a row is activated.
The incrementer is a chain of 16 flip-flops that latch the data
acquired when the row is activated. A single clock then toggles
the flip-flops, cascading down the chain in a classic sequential
adder. The resulting value is then coupled back from the flip-
flops into the columns, where it updates the counter cells
following the classing read, modify, write timing comprising
the row activate command.

We also designed testing logic for the incrementer. With this
logic, the DRAM vendor can inject a value into a counter,
generate an alarm when the Rowhammer threshold bit has
toggled, and read back the counter values. Figure 5 illustrates
the incrementer and its testing logic.

C. Service Queue

When a high-order bit of a counter toggles, Panopticon
sends a signal to the refresh logic to enqueue the row ad-
dress in a service queue. For example, an implementation of
Panopticon that sends the signal whenever the 11th bit of a

Sense Amps

Flip - Flops / Shift Register

Data In
Clock

0 puewwo)
1 puewwo)
]

eleq/wiely

Shift or

oo L LLLLLTTLLTLLLL
e TTTTTTTITITTITITITIT]

Alarm

s

» _—
Data Out

Fig. 5. Incrementer. Control logic is used for DRAM counter testing.

counter (byg) toggles would place the row address into the
service queue every 1,024 row activations. The signal uses
the Alarm/Data line shown in Figure 5.

Panopticon uses SRAM to implement the service queue.
However, this queue is small; in our performance evaluation
of Panopticon, we used a queue of 8 entries per bank. A row
address is at most 18 bits long in DDR4; in this case, the
amount of SRAM required by Panopticon is 144 bits of SRAM
per bank (in contrast, Graphene [27] requires 2,511 bits/bank).

D. Row Refresh & ALERT,, Signaling

Once enqueued, a row must be serviced in a timely manner.
One option is to service the row each REF command, at
an average rate of 7.8 s in DDR4. Upon receiving a REF
command, the DRAM can re-purpose some of its time to
service an enqueued row by refreshing its neighbors.

Servicing a row likely requires refreshing multiple rows.
DRAM disturbance often affects more than just the two rows
adjacent to an aggressor row although these effects decay
with distance in a super-linear manner [18], [15], [5]. During
DRAM testing and qualifying, vendors can tune Panopticon to
refresh all rows affected by DRAM disturbance to eliminate
any possibility of Rowhammer.

Whenever, Panopticon requires additional time to service
its queue entries, Panopticon asserts ALERT,, in a manner
similar to a command and address parity error. In this case,
a DDR4 memory controller must wait and re-try the failing
command [13]. The wait duration is specified using a register
whose value is read when DDR first initializes. With this
mechanism, Panopticon can effectively pause the memory
controller by making it re-issue the same DRAM command.
During this time, the DRAM can service its queue and refresh
all relevant potential victim rows. To resume functionality,
Panopticon de-asserts ALERT,,.

VI. SECURITY ANALYSIS

In our threat model, the attacker has complete control over
all DDR4 commands sent to DRAM, but cannot violate the
DDR protocol including the commands’ ordering and timings.
We set the Rowhammer threshold value to 512 (corresponding
to toggling by), conservatively.

Our security analysis investigates the difficulty of creating
undesirable scenarios for Panopticon, such as placing rows
in the service queue during several consecutive, back-to-back
refresh intervals (tREFI) and filling up the service queue.
We make two assumptions to simplify our analysis. Even
under these simplifying assumptions, our analysis will show

100.000
10.000
1.000
0.100
0.010
0.001

1234567 8 91011121314151617181920
Consecutive REF Intervals in which Attack is Successful

Fig. 6. Duration of an attack that aims to place a row in the service queue
in consecutive refresh intervals (tREFI).

Attack Duration (Hrs)

that such attacks are relatively easy to mount. Relaxing these
assumptions will make the attacks even more potent.

Our first assumption is that the background refresh schedule
is regular: a REF command is sent every 7.8 us [13]. Between
two consecutive REFs, an attacker has a budget of 156 row
activations to activate any rows (or the same row). This is
a simplifying assumption because the gap between two REF
commands can be up to 9 x 7.8 us in DDR4 (e.g., these gaps
are due to postponing or pulling-in REF commands). Such
gaps give the attacker an even larger budget of row activates.

Second, the attacker cannot determine any counter’s value.
The assumption is unrealistic because of the following side-
channel: an attacker learns that the counter of the most recently
activated row reached the threshold whenever the DRAM asks
the memory controller for free time. However, we wanted
to understand whether Panopticon can be made secure in
the absence of such side channels. In this case, one could
build DRAM that never needs to ask for time to perform
its Rowhammer mitigations as long as the service queue is
appropriately sized so it is never full.

Under these assumptions, we answer two questions:

1. Is placing a row in the service queue in consecu-
tive refresh intervals (tREFI) difficult? Well-tuned high-
performance DRAM might not need all 8192 REFs received
in a refresh window [13] for performing background refresh
and could re-purpose a small number (say less than 1%) for
servicing the queue. Upon receiving a REF, Panopticon would
check whether an entry is present in the service queue. In
that case, the REF would be “hijacked” away from back-
ground refresh to perform the Rowhammer mitigation. This
model works as long as the hijacked REFs are spread evenly
throughout a refresh window. An uneven spread in which rows
are placed in the queue in each several consecutive refresh
intervals (tREFI) could cause undesirable interference with the
background refresh schedule.

We analyze an attack that chooses a random row and uses
the budget (156 ACTs) to activate the row in each tREFIL.
Figure 6 shows the expected number of hours until the attack
is successful as a function of the number of consecutive REF
intervals. By choosing a random row each refresh interval
(tREF]), in less than an hour, an attacker can place a row
in the service queue for 16 consecutive tREFIs. This result
demonstrates that it is trivial for an attacker to create scenarios
in which the DRAM must perform Rowhammer mitigations
for many consecutive REFs in a row.

2. Is it realistic to use a large-sized queue to ensure it
can never be full? Each tREFI, the attack picks a set of @
random rows and activates all rows in a round-robin manner
(Q is the queue size). How long will such an attack take to

100.000
10.000
1.000
0.100
0.010
0.001

1234567 8 91011121314151617181920
of Rows Placed in Queue in single tREFI

Fig. 7. Duration of an attack that aims to fill up the queue in a single refresh
interval (tREFI) with 50% chance of success.

Attack Duration (Hrs)

have a 50% chance to place all) rows in the queue during
the same tREFI interval?

Figure 7 shows the number of hours until the attack has a

50% chance of success. When under attack, even a 20-entry
queue will be full in less than 16 hours. To be safe (i.e., the
rate of success must be negligible), Panopticon’s service queue
size must be prohibitively large.
Summary: Both results speak convincingly that an attacker
has an easy time creating scenarios in which the DRAM must
mitigate victim rows for many consecutive tREFI intervals or
the DRAM is overwhelmed with mitigating victim rows. To
remain safe under such scenarios, the DRAM must be able to
ask the memory controller for additional free time.

VII. DISCUSSION
A. A Rowhammer Attack Turns into a DoS Attack

Should attackers know the row counters’ values, they could
craft a malicious workload that consistently fills up the service
queue with aggressor rows. In such a case, DRAM would need
to spend a fraction of its time refreshing potential victim rows
rather than servicing DRAM requests. This leads to a form of
DoS because a portion of DRAM’s bandwidth is effectively
disrupted and re-purposed for performing Rowhammer miti-
gations.

We believe any form of a Rowhammer defense would need
to consume resources to perform mitigations when the system
is under attack. This will inherently open up the possibility
of DoS. However, we argue this trade-off is fundamental:
when under attack, the DRAM needs to slow down (or stop)
performing additional row activations and refresh victim rows
instead. Once the attack stops, the DRAM will resume normal
operation servicing memory reads and writes.

One potential optimization is initializing Panopticon’s coun-
ters with random values at boot time. This will make it
difficult (but not impossible) for the attacker to learn the row
counters’ values. Even lacking this information, an attacker
could overwhelm the queue, but can do so only periodically
(see Section VI). It is much more difficult doing it consistently.
However, a determined attacker could use a side-channel (such
as observing when ALERT,, is asserted) to slowly determine
when counters reach their Rowhammer threshold. Neverthe-
less, we argue that initializing counter values randomly is
helpful because it would significantly raise the bar to mounting
a DoS attack in practice.

B. The Impact of Normal Workloads

As described, Panopticon never resets its counters. Thus,
even under a normal workload, rows would need to be serviced
when their counters reach the Rowhammer threshold. This

leads to additional undesirable overhead even when the system
is not under attack.

A naive possibility is to reset a row’s counter whenever all
its potential victims are refreshed by the DRAM’s background
refresh cycle. However, we believe this is a dangerous design
choice. For a given aggressor row, different victims could be
refreshed at different points in time. In this case, no form
of counter reset is safe: the counter is reset either too early,
before some of the victim rows had a chance to be refreshed,
or too late, after some of the victim rows have been affected
by the aggressor row. Either choice provides a way for row
activations to escape being tracked.

A different, safer possibility is to clear a counter’s low order
bits (say lowest 5 bits) each time its corresponding row is
refreshed (i.e., once every 64ms in DDR4). This would be
very effective at reducing Panopticon’s overhead because most
rows are not activated more than 32 times within a refresh
window. To be safe, the Rowhammer threshold must be set
conservatively to accommodate the possibility that up to 32
row activates are not accounted for.

An additional optimization is clearing a single low order bit
(say bit 5) rather than 5 bits. This would reduce the complexity
of the clearing counters circuit. With this optimization in place,
each counter would be decremented by a value between 0 and
32 each refresh window.

C. The Power and Space Overhead of Counter Mats

DRAM vendors must accommodate the power and space
overheads of counter mats in their DRAM devices. However,
we believe this overhead to be low. The counters need not
be larger than the Rowhammer threshold; a 16-bit counter can
accommodate threshold values of up to 65,536 row activations,
and recent work has shown that modern DDR4’s Rowhammer
thresholds are much lower in fact [15], [6]. Thus, 32 columns
of counters (counting both the left and right mat areas) are
sufficient to accommodate a full row that consists of thousands
of columns.

VIII. CONCLUSIONS

This paper presents Panopticon, a complete in-DRAM
Rowhammer mitigation scheme. Panopticon uses an open-
space, staggered mat design to equip each DRAM row with
an exclusive counter. Panopticon leverages the DRAM row
decoding logic to avoid a separate implementation of a
counter lookup circuit. For DDR4, Panopticon leverages the
ALERT,, signal to pause a DRAM controller from issuing
any new, previously unseen DRAM commands. During this
time, Panopticon can perform its Rowhammer mitigation and
refresh potential victim rows. Our security analysis shows that
Panopticon must be able to ask for time from the memory
controller, or, otherwise, an attacker could trivially overwhelm
the DRAM with Rowhammer mitigation work.

Acknowledgments. We would like to thank the anonymous
reviewers for their insightful comments. We also received
helpful feedback from Kuljit Bains, David Blankenbeckler,
Tim Cowles, Brett Dodds, Todd Farrell, Terry Grunzke, Todd
Merritt, Bill Nale, and Kushagra Vaid.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

REFERENCES

Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. ORren,
and T. Austin, “ANVIL: Software-Based Protection Against Next-
Generation Rowhammer Attacks,” in ASPLOS, 2016.

C. Bock, F. Brasser, D. Gens, C. Liebchen, and A.-R. Sadeghi, “RIP-
RH: Preventing Rowhammer-Based Inter-Process Attacks,” in ASIA-
CCS, 2019.

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “CAn’t
Touch This: Practical and Generic Software-only Defenses Against
RowHammer Attacks,” USENIX Sec., 2017.

A. Chakraborty, M. Alam, and D. Mukhopadhyay, “Deep Learning based
Diagnostics for Rowhammer Protection of DRAM Chips ,” in ATS, 2019.
L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and
O. Mutlu, “Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers,” in IEEE S&P, 2020.

P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides
of Target Row Refresh,” in S&P, 2020.

S. K. Gautam, S. K. Manhas, A. Kumar, M. Pakala, and E. Yieh, “Row
Hammering Mitigation Using Metal Nanowire in Saddle Fin DRAM,”
IEEE T-ED, vol. 66, 2019.

M. Ghasempour, M. Lujan, and J. Garside, “ARMOR: A Run-Time
Memory Hot-Row Detector,” http://apt.cs.manchester.ac.uk/projects/
ARMOR/RowHammer/armor.html, 2015.

H. Gomez, A. Amaya, and E. Roa, “DRAM Row-hammer Attack
Reduction using Dummy Cells,” in NORCAS, 2016.

M. Greenberg, “Row Hammering: What it is, and how hackers could
use it to gain access to your system,” https://blogs.synopsys.com/
committedtomemory/2015/03/09/row-hammering- what-it-is-and-how-
hackers-could-use-it-to- gain-access-to-your-system/, 2015.

Z. Greenfield, J. B. Halbert, and K. S. Bains, “Method, apparatus and
system for determining a count of accesses to a row of memory,” Patent
No. US 2014/0085995, 2014.

G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Stopping Microar-
chitectural Attacks Before Execution,” JACR, 2016.

JEDEC, Double Data Rate 4 (DDR4) SDRAM Standard, 2012.

D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural Support for
Mitigating Row Hammering in DRAM Memories,” CAL, 2015.

J. Kim, M. Patel, A. G. Yaglikci, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques,” in ISCA, 2020.
J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu, “D-RaNGe:
Using Commodity DRAM Devices to Generate True Random Numbers
with Low Latency and High Throughput,” in HPCA, 2019.

M. Kim, J. Choi, H. Kim, and H.-J. Lee, “An Effective DRAM Address
Remapping for Mitigating Rowhammer Errors,” in TC, 2019.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA,
2014.

R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida,
and K. Razavi, “ZebRAM: Comprehensive and Compatible Software
Protection Against Rowhammer Attacks,” in OSDI, 2018.

M. Lanteigne, “How Rowhammer Could be Used to Exploit Weaknesses
in Computer Hardware,” http://www.thirdio.com/rowhammer.pdf, 2016.
E. Lee, S. Lee, G. E. Suh, and J. H. Ahn, “TWiCe: Time Window
Counter Based Row Refresh to Prevent Row-Hammering,” CAL, 2018.
, “TWiCe: Preventing Row-hammering by Exploiting Time Window
Counters,” in ISCA, 2019.

(23]
[24]

[25]

[26]
[27]

(28]

[29]

[30]

[35]
(36]
(371

[38]
[39]

[40]

[41]

[42]

[43]

[44]
[45]

J.-B. Lee, “Green Memory Solution,” http://aod.teletogether.com/sec/
20140519/SAMSUNG _Investors_Forum_2014_session_1.pdf, 2014.

C. Li and J.-L. Gaudiot, “Detecting Malicious Attacks Exploiting
Hardware Vulnerabilities Using Performance Counters,” in COMPSAC,
2019.

K. Loughlin, S. Saroiu, A. Wolman, and B. Kaskci, “Stop! Hammer
Time: Rethinking Our Approach To Rowhammer Mitigations,” in Ho-
t0S, 2021.

O. Mutlu, “The RowHammer Problem and Other Issues We May Face
as Memory Becomes Denser,” in DATE, 2017.

Y. Park, W. Kwon, E. Lee, T. J. Han, J. H. Ahn, and J. W. Lee,
“Graphene: Strong yet Lightweight Row Hammer Protection,” in MI-
CRO, 2020.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX Sec.,
2016.

F. Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized Many-sided Rowhammer Attacks

from JavaScript,” in USENIX Security, 2021.
S. Ryu, K. Min, J. Shin, H. Kwon, D. Nam, T. Oh, T. Jang, M. Yoo,

Y. Kim, and S. Hong, “Overcoming the reliability limitation in the
ultimately scaled DRAM using silicon migration technique by hydrogen
annealing,” in /[EEE IEDM, 2017.

S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-based Tree
Structure for Row Hammering Mitigation in DRAM,” CAL, 2017.

, “Mitigating Wordline Crosstalk Using Adaptive Trees of Coun-
ters,” in ISCA, 2018.

M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger Against
Row Hammering,” in DAC, 2017.

V. Van Der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna,
C. Kruegel, H. Bos, and K. Razavi, “GuardION: Practical Mitigation of
DMA-Based Rowhammer Attacks on ARM,” in DIMVA, 2018.

A. J. Walker, S. Lee, and D. Beery, “On DRAM Rowhammer and the
Physics of Insecurity,” IEEE T-ED, vol. 68, 2021.

Y. Wang, Y. Liu, P. Wu, and Z. Zhang, “Detect DRAM Disturbance
Error by Using Disturbance Bin Counters,” in CAL, 2019.

, “Reinforce Memory Error Protection by Breaking DRAM Distur-
bance Correlation Within ECC Words,” in ICCD, 2019.

Wikipedia, “Xeon,” https://en.wikipedia.org/wiki/Xeon.

Wikipedia, “Prisoner’s dilemma,” https://en.wikipedia.org/wiki/
Prisoner%27s_dilemma, 2020.

X.-C. Wu, T. Sherwood, F. T. Chong, and Y. Li, “Protecting Page Tables
from RowHammer Attacks using Monotonic Pointers in DRAM True-
Cells,” in ASPLOS, 2019.

A. G. Yaglik¢i, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi, S. Ghose, and
O. Mutlu, “BlockHammer: Preventing RowHammer at Low Cost by
Blacklisting Rapidly-Accessed DRAM Rows,” in HPCA, 2021.

C.-M. Yang, C.-K. Wei, Y. J. Chang, T.-C. Wu, H.-P. Chen, and C.-S.
Lai, “Suppression of Row Hammer Effect by Doping Profile Modifica-
tion in Saddle-Fin Array Devices for Sub-30-nm DRAM Technology,”
IEEE T-DMR, vol. 16, 2016.

T. Yang and X.-W. Lin, “Trap-assisted DRAM Row Hammer Effect,”
EDL, 2019.

J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-hammering based
on memory Locality,” in DAC, 2019.

Z. Zhang, Y. Cheng, M. Wang, W. He, W. Wangk, N. Surya,
Y. Gao, K. Li, Z. Wang, and C. Wu, “SoftTRR: Protect Page Tables
Against RowHammer Attacks using Software-only Target Row Refresh,”
arxiv.org, 2021.

http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/armor.html
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/armor.html
https://blogs.synopsys.com/committedtomemory/2015/03/09/row-hammering-what-it-is-and-how-hackers-could-use-it-to-gain-access-to-your-system/
https://blogs.synopsys.com/committedtomemory/2015/03/09/row-hammering-what-it-is-and-how-hackers-could-use-it-to-gain-access-to-your-system/
https://blogs.synopsys.com/committedtomemory/2015/03/09/row-hammering-what-it-is-and-how-hackers-could-use-it-to-gain-access-to-your-system/
http://www.thirdio.com/rowhammer.pdf
http://aod.teletogether.com/sec/20140519/SAMSUNG_Investors_Forum_2014_session_1.pdf
http://aod.teletogether.com/sec/20140519/SAMSUNG_Investors_Forum_2014_session_1.pdf
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Prisoner%27s_dilemma
https://en.wikipedia.org/wiki/Prisoner%27s_dilemma

	Introduction
	Prior Proposals Face Practical Hurdles
	Tracking Approaches
	Sampling Approaches
	Partitioning Approaches
	Clean Slate Approaches

	Design Goals
	High-Level Overview
	In-DRAM Architecture
	Counter Mats
	Incrementer
	Service Queue
	Row Refresh & ALERTn Signaling

	Security Analysis
	Discussion
	A Rowhammer Attack Turns into a DoS Attack
	The Impact of Normal Workloads
	The Power and Space Overhead of Counter Mats

	Conclusions
	References

