Rethinking ECC in the Era of Row-Hammer

Moinuddin Qureshi

Abstract—DRAM is susceptible to Row-Hammer failures. Recent attacks show Row-Hammer can be leveraged to access
unauthorized data and such attacks continue to break existing solutions for Row-Hammer mitigation. Recent research showed that
Row-Hammer can be performed even on ECC memories, while these memories implement SECDED or Chipkill codes. We observe
that existing ECC designs try to use the ECC bits to maximize correction, whereas the detection capability is simply a by-product of
correction code. In this paper, we argue that the ECC designs of DRAM memories should be re-architected in the era of Row-Hammer
— ECC space should provide strong detection (integrity protection), which can detect Row-Hammer failures. This would devolve the
Row-Hammer problem from a security issue to a reliability issue and provide an “insurance policy” against future unknown attacks and
newer failure modes that can corrupt memory contents. In this paper, we show that existing conventional designs for ECC-1 and
Chipkill can be re-architected to provided strong detection while retaining similar level of correction capability as conventional designs.
We accomplish this by foregoing the conventional constraint of implementing ECC at word-granularity (8 bytes) and instead implement
ECC at a line-granularity (64 bytes) which is more storage-efficient and provides bits for implementing strong detection.

1 BACKGROUND: Row-HAMMER 101

DRAM scaling brings cells closer to each other and increases
coupling between cells. Row-Hammer occurs when one row
in the memory receives a large number of activations, and
the rows neighboring this row do not have an activation
(otherwise these rows would get a precharge and restore the
data back to its original state). Figure 1 captures the problem
of Row-Hammer, for a given row X, where the neighboring
rows are labeled X-1 and X+1. If X is accessed frequently,
and X-1 and X+1 are not accessed, then the contents of
these neighboring rows can get corrupted due to Row-
Hammer. The threshold for the number of activations
within a refresh cycle required to cause data loss due to Row
Hammering is called the Row-Hammering Threshold. With
each technology generation, this threshold reduces, making
the Row-Hammer problem much severe for both current
and future DRAMs.

Number of activations

(.

7
Rowx+l [o[1[1Jo[1] [ofifofo[1] [oftofofo]
Rowx | | e | | e [
Rowst (o[[o[1[o] [o[i[o[iTo] [o[i[elo[0]

Time

Fig. 1. Row Hammer Attack on Row "X”

While the problem of Row-Hammer was publicly dis-
closed in 2014 [3] [4], this problem continues to present
significant vulnerability in current systems. For example,
recent work shows that Row-Hammer can be done even
in the presence of ECC-DIMMs [1], and the RamBleed
attack [5] shows that Row Hammer can also be used to read
unauthorized data from DRAM.

DRAM devices can be made robust against Row-
Hammer by increasing the isolation between DRAM cells.
Unfortunately, such device-level solutions has remained
elusive and row hammer continues to be a problem for
modern DRAM devices.

e Moinuddin Qureshi is with the School of Computer Science, Georgia
Institute of Technology, Atlanta
E-mail: moin@gatech.edu

2 SHORTCOMING OF EXISTING SOLUTIONS

There have been several architectural solutions proposed
for Row-Hammer. Unfortunately, these solutions continue
to be broken by newer attacks or at newer technology
generations. We discuss some of the prior solutions.

1. Increased Refresh Rate: Conventional systems use a

refresh rate of 64ms. To mitigate Row-Hammer the system
refresh rate can be increased by 2x-4x to do refresh at every
32ms or 16ms [4]. Unfortunately, higher refresh rate causes
a significant overhead in terms of both power and perfor-
mance. Furthermore, a refresh rate of 2x-4x may reduce the
rate of Row-Hammer, but is not guaranteed to eliminate it.
2. Refresh Neighbor Rows Frequently: Row Hammer can
be mitigated by refreshing (accessing and pre-charging) the
victim rows. This can be done either by probabilistically
refreshing the two neighbors (Probabilistic Row Activation
or PRA [3] [4]) on an access to a given row, or by tracking
the number of accesses for each row (Counter-Based Row
Activation or CRA [3]) and refreshing the neighbor rows
once the access count reaches a given threshold. While
these schemes have low performance overhead, the key
assumption of these schemes is that the Memory Controller
(MC) knows the mapping or rows within the DRAM chip,
and, more importantly, that the Row-Hammer threshold
is known. Unfortunately, Row-Hammer threshold varies
widely across bits and choosing the Row-Hammer threshold
conservatively (say worst-case observed in the experimental
data) may still not guarantee Row-Hammer protection, as
some DIMMs may have a lower Row-Hammer threshold.
Furthermore, the Row Hammer threshold can vary signifi-
cantly across technology generations and over time.
3. Targeted Row-Refresh (TRR): DRAM vendors have
equipped DDR4 memories with TRR, which “refreshes” the
neighbors of few frequently accessed rows. The details of
how the frequent rows are tracked within the DRAM is usu-
ally not publicly available. Nonetheless, recent attacks [2]
have been able to cause Row-Hammer even with TRR.

3 EFFIcACcY OF ECC AGAINST Row-HAMMER

Memory systems are subjected to naturally occurring faults
such as due to alpha-particle strike or chip-failures. To mit-
igate such errors, memory systems are often equipped with
an additional chip to store the bits for the Error Correction
Code (ECC). Figure 2(a) shows the organization of an ECC

K Conventional ECC at word (8 byte) granularity /

(a)

Qcc at line granularity (10 bit for ECC-1 + 54-bit for MAcy

(b)

Fig. 2. ECC DIMM (a) Conventional SECDED (b) Proposed IPEM design provides ECC-1 for 64-byte line + 54-bit MAC within the same ECC space
(IPEM provides correction strength similar to SECDED, as the chance of single-bit failures within multiple words of a line is negligible)

equipped DRAM. The 64-bit data bus is equipped with an
additional an 8-bit ECC bus. When memory is accessed,
the 8-bit ECC is used to perform a single-error-correction-
double-error-detection (SECDED) on the 64-bit data. Note
that, we need 7-bit for SEC and only 1 extra bit for DED,
and this storage can be fit in the 8-bit of the ECC code.

While the conventional wisdom was that ECC memories
would be resilient to Row-Hammer (as they can correct the
bit flips caused by Row-Hammer), a recent work [1] showed
that ECC-equipped memories can still be subjected to Row-
Hammer. The key insight was to leverage the variation in
latency due to ECC correction to figure out when a single
error occurs, and then progressively cause more failures in
the line. A similar strategy can be adopted if the line has the
ability to correct multiple bits. Therefore, naively increas-
ing the error-correction capability to ECC-2 or ECC-3 will
not guarantee protection from Row Hammer. ECC memo-
ries can implement Chipkill, however, the recent work [1]
showed that even Chipkill memories can be made to cause
Row-Hammer. Therefore, extension of conventional ECC
designs are insufficient at providing guaranteed mitigation
of Row-Hammer for future memory systems.

4 RETHINK ECC FOR STRONG DETECTION

Conventional ECC codes are designed mainly for handling
naturally occurring errors — such as alpha particle strike or
chip failures. The main guiding principle in the develop-
ment of ECC codes is to maximize the correction capability
and the detection capability is simply a byproduct of the
correction code. For example, for the 64-bit SECDEC code,
doing single error correction (ECC-1) requires 7-bits and
adding an extra bit provides double error detection (DED),
hence the 8-bit SECDED code. Similarly, with Chipkill, the
symbol-based code designed to correct one symbol (one
chip failure) can easily provide the ability to detect the cor-
ruption in a second symbol, thus providing Single-Symbol-
Correct-Double-Symbol-Detect (SSCDSD) capability.

Row-Hammer failures are not naturally occurring, but
they can be orchestrated by an adversary. Thus, the rate of
Row-Hammer failures is dependent on the attack patterns
applied by the adversary. While there is research in trying
to mitigate Row Hammer failures (and we encourage such
research!), it is unlikely that we will have a solution that
will guarantee elimination of Row-Hammer failures across
device technologies and attack patterns.

As Row-Hammer is not just a reliability issue but a
security threat, we note that it is important to at-least detect
such failures. A reliable detection can avoid the system from
consuming the corrupted data, which could have caused

the attacker to break confidentiality and potentially take
over the system. Therefore, we argue that the ECC codes
in the era of Row-Hammer should be designed to provide
strong detection capability (against arbitrary data corrup-
tion) while still providing a reasonable amount of correc-
tion capability. Thus, strong detection capability should be
regarded as a first-class constraint in the design of future
ECC codes. Such a design can provide protection against
security threats that arise from adversarial memory corrup-
tion, including from Row-Hammer attacks.

Strong detection of arbitrary failures can be accom-
plished by Message-Authentication Code (MAC), and such
codes have been used in the implementation of secure
memory designs. With an n bit MAC code, an arbitrary
modification has only a 1-in-2" chance of escaping detec-
tion. We propose that ECC code should be modified to put
MAC as a component while still providing the correction
capability for correcting naturally occurring errors. We show
how such Integrity Protected memories can be built within
the existing space of the ECC codes, for both SECDED
designs and Chipkill designs, while incurring no additional
storage overheads. Thus, we can get integrity protected
memories, which can detect Row-Hammer failures and thus
remove the security threat from such failures, at negligible
overheads in terms of area, power, and performance.

5 INTEGRITY-PROTECTED ECC MEMORY (IPEM)

Conventional ECC designs form code-word at a 8-byte
granularity, such that each burst of data arriving from the
64-bit bus gets protected by the 8-bit ECC bus, as shown in
Figure 2(a). This is largely done for legacy reasons, as earlier
designs would allow the DIMM to transmit as small an
amount of memory as 1 burst (8 bytes). However, processors
typically interact with the memory at the granularity of
cachelines (e.g. 64 bytes), so one could do ECC computation
at the line granularity instead of at the word granularity.
Furthermore, modern standards for memory, such as the
DDR4 standard, dictates that memory must have a mini-
mum burst length of 8, which means when memory is ac-
cessed, it will provide at least 64 bytes. Thus, from both the
processor and memory viewpoint, the minimum granularity
of interaction is 64-bytes. Thus, instead of viewing the ECC
space as 8-bit per 64-bit data, we can view it as 8-bytes per
64-byte of data. We can implement ECC-1 on 64-byte cache
line with just 10 bits (note that the cost of the ECC increase
logarithmically with the data size) and still have 54-bits left
over. Our proposed design of Integrity Protected ECC Memory
(IPEM) is shown in Figure 2(b), where the ECC code is
formed at a line granularity, with ECC-1 protection, and the

@te: Typical Chipkill implementations use 4-bit chips

K18 symbols (4-bit each) = 72-bits in each burst (xy

(a)

IPCM uses the 2 extra chips: one as MAC, second as Pa%

D
p)

M P
AC AR

I (across 8 transfers)

k64-byte data + 32-bit MAC + 32-bit Parity = 72-bytes/

(b)

Fig. 3. Chipkill protected DRAM (a) Conventional Chipkill design using symbol-based code operating on 18-chips (S0-S17) (b) Proposed IPCM
design provides single-chip-correction and strong detection by using MAC for error detection and chip-wise Parity for correction.

54-bits are used for MAC. Thus, IPEM can provide the same
correction capability of conventional SECDED, but have
much stronger detection. ECC-1 is computed on the 512-bit
data + 54-bit MAC. When the line is accessed, the memory
controller first performs ECC-1 correction (if any), and then
computes the MAC of the 512-bit data, and compares it with
the retrieved MAC. A mismatch signals integrity failure.
Such a design will detect arbitrary corruption of data (due to
Row-Hammer or any other reason) and would prevent the
processor from consuming potentially malicious data. Thus,
IPEM alleviates the security issues of Row-Hammer and
instead makes Row-Hammer seem like a reliability problem
(or at-most as a denial-of-service attack rather than attacks
that can take over the system).

While the IPEM design has strong security properties,
it does so without significantly affecting the correction
capability of the conventional SECDED. Both IPEM and
SECDED can correct 1-bit failures, IPEM does so at 64-
byte granularity and SECDED does it at 8-byte granularity.
The only case where SECDED can correct and IPEM cannot
correct is when single bit failures happen in multiple words
of a cache line, which, based on existing data on memory
failures occurs with negligible probability. So, the correct
capabilities are similar. However, it is possible to get mis-
correction (or Silent Data Corruption (SDC)) with SECDED,
when the number of failures exceed 2, however, with IPEM,
given the MAC, episodes of mis-correction or SDC are
virtually eliminated. Thus, IPEM offers better reliability.

Finally, one could tune IPM to provide varying level of
ECC protection. For example, one could have ECC-2 for a
64-byte line with 44-bit MAC, or ECC-3 for the line with a
34-bit MAC. Thus, the increased granularity of IPEM can
help with providing even higher level of correction than
what is otherwise possible with conventional ECC designs.

6 INTEGRITY-PROTECTED CHIPKILL MEMORY

Memory systems can suffer large granularity failures such
as a row failure, column failure or bank failure. Memories
can be protected from such large-granularity failures using
a stronger form of error-correction code called Chipkill,
which can tolerate the failure of an entire chip. Figure 3(a)
shows the operation of a conventional Chipkill design. Such
memories require at least two extra chips, therefore they
are formed at the granularity of 18 chips, with 16 chips for
data and two for redundancy. Typically a Chipkill DIMM
would be composed of 18 chips, each providing only 4-bit

of data in each burst. For implementing Chipkill, the data
is stored as symbol-based code, where each 4-bit represents
a symbol, and the two extra symbols help with detecting
and correcting symbol failure. Conventional Chipkill can
provide single-chip correction and double-chip detection
(SCCDCD). Similar to SECDED, the detection capability of
Chipkill is simply a byproduct of the correction code and is
not necessarily the key objective in designing the code.

While Chipkill can tolerate larger granularity failures,
it cannot guarantee protection from Row-Hammer. For ex-
ample, if there are failures in 3 chips, then Chipkill can
cause mis-correction, leading to Silent-Data-Corruption and
consumption of incorrect data values. Recent work [1] dis-
cusses how Chipkill designs could be overcome to cause
Row-Hammer failures.

We argue that instead of limiting the detection of
Chipkill to only 2 chip failures, it is important to provide
strong detection capability for arbitrary failures. We show
that it is possible to redesign Chipkill while ensuring strong
detection, all within the same storage space of conventional
Chipkill. Our proposed design of Integrity Protected Chipkill
Memory (IPCM) is shown in Figure 3(b). Instead of storing
data in symbol-based form, the data is kept in plain form in
the 16 chips (D0-D15) and the two extra chips are used to
store MAC and Parity. MAC is computed on the data chips
and the Parity chip stores the chip-wise parity across all the
data chips. On an access, the data from all the data chips are
used to compute the MAC, and this MAC is compared with
the stored MAC. A match indicates integrity verification.
A mismatch requires correction. As we have parity, we can
recover the data if we knew which data chip has failed. As
we do not know the location of the failed chip, we can do
an iterative search from DO to D15, discarding one chip at
a time, using parity to reconstruct that chip, recomputing
MAC and matching with the stored MAC. On a match the
reconstructed data is used. The location of the failed chip
can be stored to reduce the iterative search for subsequent
access. The IPCM design can correct a single chip failure
(with very high probability) and can detect failures of
arbitrary number of chips (again with high probability).
IPCM virtually eliminates the rate of SDC, and thus makes
Row-Hammer attacks seem more like reliability failures
(Detected Unrecoverable Errors) rather than Security issues
(consumption of corrupted data). IPCM does so while using
the same form factor as Chipkill, while incurring negligible
overheads in terms of power and performance.

Performance Consideration for IPCM: On a failure (mis-
match on MAC), IPCM uses iterative correction to identify
the faulty chip. Such iterative correction can incur latency of
up-to 16 rounds of parity-based repair (about 2 cycles) and
MAC computation (about 30 cycles), so the total latency of
such correction can be in the range of few hundred cycles.
While the repair overhead of IPCM may seem impractical,
we point out that this overhead is incurred only in case of
memory errors. This overhead can be negligible in practice
for the following reasons:

1) Given the FIT rate of modern memories, most of the
DIMMs are not expected to experience multi-bit fail-
ures in the lifetime of the server, so the iterative cor-
rection of IPCM would not impact the performance
of such DIMMs. Furthermore, for transient failures
(that happens at a low rate, say once in few months),
the overhead of few hundred cycles is negligible, so
the performance penalty of iterative correction is a
performance issue mainly for permanent faults.

2) The full overhead of iterative correction must be
incurred when the first time a chip failure is en-
countered. However, for subsequent corrections, we
can remember the chip that failed the last time and
start the iterative correction from that chip, so if the
same chip failed, we incur only one extra correction
and MAC computation (instead of 16). This would
reduce the correction latency to about 30-40 cycles.

3) We can track the number of corrections that have
occurred, and if this is above a certain threshold
(within a period of time), then we can deem that a
particular chip has failed, with the chip that caused
the most number of faults identified as the faulty
chip. We can modify IPCM to skip the first MAC
check (where MAC was computed only on data
chips), and directly reconstruct the data for the
faulty chip using the Parity chip, and only then do
a MAC check on the computed MAC. This way the
reconstruction overhead of IPCM can be reduced to
parity-based reconstruction (about 2 cycles) even in
case of a chip failure.

7 CONCLUSION AND FUTURE WORK

In this paper, we argue that ECC must be redesigned
given the security threat of Row-Hammer (and potentially
other types of memory integrity attacks in the future).
ECC designs have thus far focused only on maximizing
the correction capability, and the detection capability is a
secondary attribute. We contend that the ECC code must be
re-purposed to provide strong detection (while maintaining
the correction capability), so that Row-Hammer induced
memory failures can get caught and do not become security
threats. We present two designs: IPEM and IPCM, that pro-
vide similar levels of correction as SECDED and Chipkill,
while still providing integrity verification.

To build Row-Hammer aware ECC designs we envision
that future work could consider several directions. We dis-
cuss two specific ones. First, Low-Latency MAC. Both IPEM
and IPCM requires MAC calculation in the critical path
which can impact performance compared to conventional
ECC designs. Low-latency MAC designs (or alternative
signature methods such as CRC, which are robust to reverse
engineering) would be useful for deploying in future sys-
tems. Second, ECC-Driven Adaptive Refresh. Row Hammer
can be reduced significantly by increasing the refresh rate.
However, doing so all the time can cost significantly in terms
of performance or power. With Adaptive Refresh we would

4

trigger a higher refresh rate only when the ECC engine
performs a correction and keep that higher refresh rate for a
few minutes while other mitigation is triggered (remapping
of memory or remapping of the process to another machine).
For naturally occurring errors, we expect ECC correction to
occur at a rate less than 1 time per month, so the overhead
of higher refresh rate for a few minutes every month is a
negligible cost for non-malicious ECC corrections.

REFERENCES

[1] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correct-
ing codes : On the effectiveness of ecc memory against rowhammer
attacks,” in IEEE Security and Privacy, 2019.

[2] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu,
C. Giuffrida, H. Bos, and K. Razavi, “TRRespass: Exploiting the
Many Sides of Target Row Refresh,” in S&P, May 2020.

[3] D. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support for
mitigating row hammering in dram memories,” IEEE Computer
Architecture Letters, vol. 14, no. 1, pp. 9-12, 2015.

[4] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,

K. Lai, and O. Mutlu, “Flipping bits in memory without accessing

them: An experimental study of dram disturbance errors,” in

Proceeding of the 41st Annual International Symposium on Computer

Architecuture, ser. ISCA 14, 2014.

A.Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading

bits in memory without accessing them,” in 41st IEEE Symposium

on Security and Privacy (S&P), 2020.

[5

—_

