
Reverse-Engineering Bank Addressing Functions on AMD CPUs

Martin Heckel∗†, Florian Adamsky∗
∗Institute of Information Systems (iisys)

Hof University of Applied Sciences
Hof, Germany

firstname.lastname@hof-university.de
†Institute of Applied Information Processing and Communications (IAIK)

Graz University of Technology
Graz, Austria

Abstract—The memory controller of the CPU uses bank
addressing functions to determine physical locations within
DRAM DIMMs. There are many fields of application for
these addressing functions, particularly in security. For exam-
ple, many Rowhammer proof-of-concepts use bank addressing
functions to select addresses located on the same bank but in
different rows to produce row conflicts. AMD provides these
addressing functions for older CPU models. Hence, research on
reverse-engineering addressing functions mainly targeted Intel
CPUs since Intel did not publish these functions. However,
AMD stopped to publish the DRAM addressing functions
several years ago. AMD manufactures roughly a third of the
sold CPUs in today’s CPU market. We analyze the reverse-
engineering tool for addressing functions published by Pessl
et al. and find that it does not work with AMD CPUs, hin-
dering reverse-engineering attempts and Rowhammer attacks
on systems with AMD CPUs. In this paper, we introduce an
approach to reverse-engineer the addressing functions of AMD
CPUs, which facilitates future Rowhammer experiments on
AMD CPUs.

1. Introduction

Memory is a substantial component in every information
processing device, and due to the drastic increase in the
requirements for performance and capacity, memory chips
have become very dense. The operating system (OS), with
the help of the memory management unit (MMU), trans-
lates virtual to physical memory addresses. The memory
controller then translates the physical memory addresses into
a DRAM location, i. e., channels, DIMMs, ranks, and banks,
using DRAM addressing functions.

Addressing functions have many fields of application.
For example, researchers in IT security are interested in
these functions to understand DRAM attacks better. One
such attack is Rowhammer, in which an attacker can flip bits
by rapidly accessing the content of nearby memory rows. An
attacker can conduct better targeted Rowhammer attacks if
the addressing functions are known. Pessl et al. [8] presented
an approach to measure DRAM addressing functions en-

tirely in software removing the requirement to perform phys-
ical probing. However, these addressing functions can also
be used for performance optimization, such as application-
aware memory channel partitioning [7] or variable page
sizes [9] for more efficient row-buffer usage.

In contrast to AMD, Intel has not published the ad-
dressing functions of their CPUs. Therefore, the scientific
community focused on reverse-engineering the DRAM ad-
dressing functions of Intel CPUs [8, 10, 5, 3]. AMD had a
market share of 35.2 % (Intel had 62.8 %) in the market
of x86 CPUs in Q3 2022 [4]. So, roughly one-third of
x86 CPUs are manufactured by AMD. AMD published
the DRAM banks’ addressing functions in the BIOS and
Kernel Developer’s Guide (BKDG) up to microarchitecture
16h [1]. Beginning with microarchitecture 17h (released
in 2017 [2]), no BKDG was released, so the addressing
functions of the DRAM banks are not publicly available
anymore.
Our paper makes the following contributions:

• We present an adapted approach based on the one
introduced by Pessl et al. [8] to reverse-engineer the
addressing functions on AMD CPUs.

• We evaluate our approach on four CPUs with two
different DRAM settings.

• We provide the addressing functions that we have
found with our approach.

• We publish our AMD DRAM addressing function
reverse-engineering tool1.

However, to the best of our knowledge, this paper is the first
to focus on reverse engineering the addressing functions of
AMD CPUs.

2. Backgrounds

This section briefly overviews how DRAM memory is
organized and how the memory controller uses the address-
ing functions.

1. https://anonymous.4open.science/r/amdre-poc-A085/

https://anonymous.4open.science/r/amdre-poc-A085/


Determine Threshold T (Row Hit vs. Row Conflict)

Determine Number of Banks Address Groups

Determine Block Size Address Groups

Add additional Addresses Address Groups

Derive Addressing Functions Addressing Functions

Figure 1. Overview of the reverse-engineering process. Actions (shown on
the left side) lead to results (shown on the right side) and require some of
the results of previous actions. Different results are depicted in different
colors. Actions that require and return address groups add more addresses
to the existing groups.

DRAM memory, in general, is organized in channels,
DIMMs, ranks, and banks. The channel is a bus that con-
nects the DIMMs with the CPU. In the case of a multi-
channel memory architecture, DIMMs can be on different
channels or share the same channel. A DIMM contains
the actual DRAM chips, containing banks, which can be
organized in groups called ranks. DRAM banks store data
in cells consisting of capacitors and transistors organized in
arrays of rows and columns. Additionally, a bank contains
a row buffer that stores the entire row accessed last.

Since reading destroys the data saved in a row, the data
has to be written back before the next row can be read.
Writing the content of the row buffer back to the DRAM
array before the next row is fetched (called row conflict) is
significantly slower than if the correct row is already in the
row buffer (called row hit).

The memory controller selects the bank by applying an
XOR operation to the bits of the physical address masked
with each of the addressing functions. The result of this op-
eration is used as one addressing bit of the DRAM bank [8]
for each DRAM addressing function. These functions split
the available physical addresses equally to the physically
available DRAM banks. If there are nbanks DRAM banks
and nbanks is a power of two, there should be log2(nbanks)
addressing functions. If nbanks is not a power of two, non-
linear functions are used.

Since the memory controller is part of the CPU, differ-
ent addressing functions exist on different CPUs. However,
Pessl et al. [8] showed that the addressing functions also
depend on the system’s DIMM configuration. That means
that the addressing functions can differ on systems with the
same CPU.

3. Reverse-Engineering of DRAM Addressing
Functions on AMD CPUs

This paper introduces an approach to reverse-engineer
AMD CPUs’ addressing functions that only depends on
access to physical addresses and measurements of access
timings. Figure 1 gives an overview of the procedure.

3.1. Determine the Threshold between Row Hit and
Conflict

The first step is determining the threshold T between
a row hit and a row conflict, which is required to measure
whether addresses belong to the same bank. For that, we
need to measure the access time of memory addresses. If
the access is slow, we assume a row conflict was triggered.
Thus, the memory addresses are in the same bank but in
different rows. If the access is fast, we assume a row hit
was triggered, and the memory addresses are located in
different banks or the same row in the same bank. We need
to determine a threshold T to distinguish between the two
cases.

Our proof-of-concept allocates a 2 MiB transparent
hugepage and measures the access time of the first and
the second page (e. g., the first and the 4096th byte) n
(by default, 200) times to rule out noise. We use the
rdtscp instruction to measure the access time. To avoid
that the CPU caches the results, our proof-of-concept uses
the clflush instruction between measurements to remove
the data from the cache. Then, the proof-of-concept com-
putes the average by dividing the measured access time by n.
Next, we repeat the measurement for all other pages within
the transparent hugepage, group all measurements by access
time and search for a gap in the access times, which should
be between row hits and conflicts. If the gap is found, the
middle of the gap is used as the threshold value.

This measurement is repeated for multiple transparent
hugepages to increase the accuracy. The number of transpar-
ent hugepages can be configured and is set to 21 by default.
The median of all measurements is used as the threshold.

3.2. Measuring the Number of Banks

In this step, we measure the number of banks by group-
ing addresses with row conflicts. Addresses that end up in
one group belong to the same bank. Initially, there are no
groups. We take every 4096th address, i. e. one per 4 KiB
page, and compare it with x randomly selected addresses
of each group. If the address does not fit in a group or
there are no groups, this address goes into a new group. If a
group has fewer than x addresses, the address is compared
to all addresses in this group. The comparison works as
follows: When the access time (measured the same way
as described in Section 3.1) is higher than the threshold
determined before, there is a row conflict, and the address
is at the same bank as the other addresses in the group;
otherwise, there is a row hit. When multiple groups have
access times longer than the threshold, which might occur
due to measurement errors, the group with the longest access
time is used. We set x = 9 in our experiments which
worked best for us, but this parameter can be changed via
a command line option.

At least two 4 KiB pages fit into one row on x86 64
systems, assuming a size of 8 KiB for a row. As a 4 KiB
page can span multiple banks and rows, it is possible to fit
parts of more than two 4 KiB pages into one row on one

2



bank [8]. Thus, comparing two addresses that are located in
the same row will produce a row hit even if they belong to
the same bank. To avoid this problem, we regroup the initial
groups. We iterate through the groups, removing each one
after another, and try to add the addresses that belong to
the removed group to the remaining groups. If one of the
remaining groups matches (e. g., a row conflict occurs), our
proof-of-concept adds the address to that group. Otherwise,
our proof-of-concept adds the address to a new group. This
regrouping step is repeated until the number of groups is
plausible, meaning it is a power of two. Afterwards, the
number of groups is fixed, e. g., no new groups are created
by the following steps.

3.3. Detecting the Block Size

The next step is to detect how many consecutive memory
addresses are located in the same bank. This block size helps
us determining which bits we can ignore when inferring the
addressing functions. Additionally, it decreases the number
of addresses we need to group, speeding up the process.

First, we guess the block size, starting with 4096 B.
Then, we count the number of consecutive memory ad-
dresses for the guessed block size. When we start with
4096 B, we need to find memory addresses at offsets of
0x1000 (=̂ 4096). If we do not find consecutive memory
addresses, we divide the block size by two and try again.
The next block size would be 2048 B. We already found
the number of banks, but since we halved the block size,
we have more addresses, which we need to sort again into
the groups. That is the case since only every 4096th address
was grouped before. Now, every 2048th address has to be
grouped. In contrast to the grouping described before, no
new groups are created at this stage. When an address does
not fit into any existing group, it is discarded.

If the number of consecutive memory addresses is one,
the block size is smaller than or equal to the currently
guessed block size. If it is two, the system’s block size is
twice the currently guessed block size, so the block size is
known in this case. Therefore, we must halve the block size
until the number of consecutive memory addresses is two.
We will repeat this process until we find the block size or
reach 64 B, which is the size of one cache line.

3.4. Add Additional Addresses to the Groups

When we found the block size, we can allocate more
transparent hugepages and add more memory addresses to
the groups. This procedure is similar to the one described in
Section 3.2, except that we will not create new groups and
use the measured block size. If an address cannot be added
to any group, e. g., due to measurement errors or noise in
the system, we discard the address. This optional step was
not necessary for the tested systems in Section 4. However,
there might be systems where the addressing function uses a
bit before the 21st bit. In that case, one transparent hugepage
is insufficient to derive the full addressing functions. In that
case, additional transparent hugepages are required.

3.5. Deriving the Addressing Functions

The final step is to derive the linear addressing functions.
We implemented this step with multi-threading to reduce
the time to derive the addressing functions. Each thread
computes a mask candidate similar to Drama [8]. Initially,
we try one bit (e. g., 0x01) followed by the next larger
combinations with the same number of bits. If this is no
longer possible, two bits (e. g., 0x11) followed by the next
larger combinations with the same number of bits are tried.
This is repeated until max mask bits bits are set. Thus, all
possible masks with 1 ≤ n ≤ max mask bits are computed
in total. We set the max mask bits = 7 by default to limit
the number of candidates and, thereby, the time required for
mask detection. Each mask is then checked to see whether
it is valid based on the following criteria:

• The function yields the same results for all addresses
within the same group for all groups.

• The function splits the groups equally, e. g.,, it pro-
vides the results 0 and 1 for 50 % of the the groups.

• The mask is not equivalent to a simpler mask. This is
analyzed by toggling the ones in the mask to zeroes
in all possible combinations. If one of the modified
masks yields the same results, the current mask is
equivalent to a mask with fewer bits and, therefore,
does not have to be added.

After the threads are done, the detected masks are unified
since the algorithm described above does also detect linear
combinations of other masks. Finally, it is verified that the
number of detected masks equals log2 nbanks. If that is the
case, the detected masks are returned.

3.6. Runtime Estimation

The runtime of the approach described before depends
on multiple parameters. We divide the reverse engineering
process into three stages: In the first initialization stage (S1),
our proof-of-concept measures the threshold between row
hit and conflict. In the grouping stage (S2), our proof-of-
concept groups memory blocks based on their timings when
accessed alternatingly. In the last stage (S3), our proof-
of-concept derives the addressing functions with multiple
threads.

First, we look at the number of banks nb depending on
the number of addresses na. In stage S2, when na ≤ nb ·x,
the runtime does not depend on nb. When na ≥ nb · x,
the runtime has a linear dependency to nb. Each address is
compared to at most x (9 by default) randomly selected other
addresses from the same bank. Therefore, if there are more
than x addresses in the bank, the number of comparisons
for each new address is limited to x per bank.

Next, we look at the number of transparent hugepages
nt. For both stages, S1 and S2, the runtime depends on
nt linearly. The block size ns influence stages S1 and
S2 inverse proportionally. If our proof-of-concept is run
with multiple threads nc, the last stage S3 depends inverse
proportional on nc.

3



Regarding the number of bits set at most in the mask
candidates nm: For S3, we need to sum up the binomial
coefficient since all combinations with 1 ≤ x ≤ nm bits are
selected.

See Section 4 for runtime measurements during the
performed experiments.

4. Experimental Evaluation

We reverse-engineered the addressing functions on sev-
eral systems with different CPUs and multiple DIMM
configurations. In addition, we performed these measure-
ments for different proof-of-concepts. In order to ensure
that our approach works on Intel CPUs as well, we run
our proof-of-concept on several Intel CPUs in addition
to the AMD CPUs. First, we analyze the existing Drama
proof-of-concept [8]. Next, we evaluate the proof-of-concept
introduced in this paper. Table 3 provides an overview of
the systems used for experimental evaluation.

As the approach shown by Pessl et al. [8] is similar
to our approach, it is used for evaluation. Their proof-of-
concept returns all reverse-engineered addressing functions
(might be more than addressing functions on the system) and
their probability. Afterwards, the user has to guess which
of the returned addressing functions are the correct ones.
Therefore, the log2(nB) most probable addressing functions
are listed for systems with nB banks in the evaluation.
Additionally, we provide the total number of identified
addressing functions. The proof-of-concept was executed on
several systems with AMD and Intel CPUs. Table 2 shows
the results of our measurements.

The number of DIMMs in Table 2 is depicted as nD

and the number of DRAM banks is depicted as nB . Not
all identified addressing functions are listed due to space
limits, but only the most probable ones. We provide the total
number of addressing functions if more addressing functions
were identified.

The proof-of-concept introduced in this paper was exe-
cuted on the same systems with AMD and Intel CPUs. The
configuration of the systems significantly affects the runtime
(see Section 3.6 for detailed estimation of runtime impacts).
The results of the measurements are shown in Table 1.

It should be noted that both the proof-of-concept by
Pessl et al. [8] and our approach identified addressing func-
tions on systems with AMD CPUs. The addressing functions
reverse-engineered on the Intel systems are the same for
both tools with the exception of the i7-4800MQ where
Drama did not find all required sets. However, the ones
on AMD systems are different. The addressing functions
derived by Drama were not stable on the AMD systems,
e. g., different when the tool was executed multiple times.
Our tool took longer to execute but was more stable than
Drama. Therefore, we conclude that Drama does not run
stable on systems with AMD CPUs. However, we depict the
addressing functions identified by Drama for completeness.

5. Limitations

Like prior approaches [8], our reverse-engineering ap-
proach introduced in this paper only works on systems
with linear DRAM addressing functions, i. e., the total
number of DRAM banks is a power of two. Moreover,
since it is exclusively based on timings, it is impossible
to get further semantic information related to the detected
addressing functions, e. g., determining whether a detected
function addresses a channel, rank, DIMM, bank group,
or bank. Our proof-of-concept needs root privileges to get
the physical addresses mapped to virtual addresses using
/proc/self/pagemap. Since the addressing functions
can only be applied to physical addresses (or parts of virtual
addresses that are directly mapped to physical addresses),
the restriction with the root privileges should not be a
problem in typical application scenarios.

6. Related Work

In 2014, Kim et al. [6] analyzed the effect that bits in
DRAM flipped (e. g., a 1 changed to a 0 or vice versa) when
spatially nearby memory locations were repeatedly accessed.
In addition, the authors reverse-engineered addressing func-
tions on the Intel CPUs they used in a way. They found that
the two selected addresses should have a distance of 8 MiB
to be on the same bank.

Later, Pessl et al. [8] introduced a more generic approach
to reverse-engineer addressing functions without requiring
physical access, by using timing instead. The primary ap-
proach is to measure the time a specific number of alternat-
ing accesses to two addresses takes when the accesses are
not cached. If that access time is considered high, there is
a row conflict, and both addresses are on the same bank in
different rows. Otherwise, there is a row hit, and the ad-
dresses are either on different banks or on the same bank in
the same row. Based on the conflicts, addresses are grouped,
mapping to banks. Afterwards, the addressing functions can
be derived using the physical addresses in the groups. The
authors evaluated their approach on several systems with
Intel CPUs by physically probing the accessed components
and comparing the results of the reverse-engineered ad-
dressing functions to the probed values. They showed that
different addressing functions are used depending on the
configuration of DIMMs in the systems. In contrast to their
tool, our tool measures the number of DRAM banks, so it
does not have to be specified manually and can be used
as additional sanity check. Additionally, we do not select
addresses randomly out of an address pool but group entire
2 MiB transparent hugepages. We modified the measure-
ments of the timings to get more precise results and reduce
the impact of noise. However, this approach slows down the
measurements, so our tool brings more stable results at the
cost of a higher runtime.

In 2018, Barenghi et al. [3] showed that the addressing
functions used by the memory controller depend on the
configuration of DIMMs in the system. Their approach is
similar to the one showed by Pessl et al. [8].

4



TABLE 1. RESULTS OF THE REVERSE-ENGINEERING TOOL INTRODUCED IN THIS PAPER.

CPU nD nB Blocksize Addressing Functions (Bit Mask) Time

AMD Ryzen 9 5950X 2 64 64 B 0x003fc0, 0x004100, 0x008000, 0x070000, 0x090000, 0x120000 2673 s
1 32 64 B 0x004000, 0x048000, 0x090000, 0x103fc0, 0x138000 8048 s

AMD Ryzen 9 3900X 2 64 64 B 0x003fc0, 0x004100, 0x008000, 0x070000, 0x090000, 0x120000 2675 s
1 32 64 B 0x004000, 0x048000, 0x090000, 0x103fc0, 0x138000 16 201 s

Intel Core i9-10900K 2 32 64 B 0x004080, 0x01b300, 0x048000, 0x090000, 0x120000 742 s
1 16 8192 B 0x002000, 0x024000, 0x048000, 0x090000 18 s

Intel Core i7-4800MQ 2 32 64 B 0x00f380, 0x020000, 0x044000, 0x087380, 0x130000 3644 s
1 16 8192 B 0x022000, 0x044000, 0x088000, 0x110000 58 s

TABLE 2. RESULTS OF THE REVERSE-ENGINEERING TOOL INTRODUCED BY PESSL ET AL. [8].

CPU nD nB Blocksize Addressing Functions (Bit Mask) Time

AMD Ryzen 9 5950X 2 64 64 B (none) 131 s
1 32 64 B 0x10290000, 0x80, 0x20010200, 0xc100200, 0x22204000, ... (14) 555 s

AMD Ryzen 9 3900X 2 64 64 B 0x40, 0x100, 0x400, 0x800, 0x800000, 0x21000, ... (12) 562 s
1 32 64 B 0x8000, 0x4000000, 0x41000, 0x401000, 0x8001000, ... (20) 42 s

Intel Core i9-10900K 2 32 64 B 0x004080, 0x01b300, 0x048000, 0x090000, 0x120000, ... (6) 371 s
1 16 8192 B 0x002000, 0x024000, 0x048000, 0x090000, ... (5) 135 s

Intel Core i7-4800MQ 2 32 64 B 0x00f380, 0x00040, 0x044000, 0x088000, 0x110000 111 s
1 16 8192 B 0x022000, 0x044000, 0x088000, 0x110000, ... (5) 96 s

TABLE 3. SYSTEMS USED FOR EXPERIMENTAL EVALUATION

CPU DRAM type Number of DIMMs

AMD Ryzen 9 5950X DDR4 1, 2
AMD Ryzen 9 3900X DDR4 1, 2
Intel Core i9-10900K DDR4 1, 2
Intel Core i7-4800MQ DDR3 1, 2

Two years later, Wang et al. [10] combined the approach
introduced by Pessl et al. [8] with additional knowledge
about the DIMM configuration and addressing functions in
general. Thereby, they were able to reverse-engineer DRAM
bank addresses significantly faster. Additionally, their ap-
proach gave information about the parts of addresses used
to address rows and columns within the same bank. The
authors claimed to open-source their tool, which seems not
have happened until now. Upon a request we send to the
authors we did not get any response.

In the same year, Helm et al. [5] introduced an approach
that uses CPU performance counters instead of timings to
group addresses by DRAM bank. Due to the usage of
the counters, the results are more precise than the ones
received via timing. Since the timers the authors are using
are not supported on the AMD systems we used for our
experiments, we can not evaluate their approach on AMD
CPUs.

However, all of these publications focus on Intel CPUs,
and none of them verified their approach on AMD. Our
work closes this gap and extends over prior techniques.

7. Conclusion and Future Work

In this paper, we introduced a new approach extending
the one by Pessl et al. [8]. We evaluated the proof-of-concept
from prior work [8] for reverse-engineering the addressing
functions on systems with AMD and Intel CPUs. Addition-
ally, we evaluated our new approach on these systems and
showed that prior approaches did not yield good results on
AMD-based systems.

In the future, the scientific community should evaluate
techniques to reverse-engineer DRAM addressing functions
further on AMD CPUs to better understand both, what
DRAM addressing functions on AMD in general look like
and which patterns they follow, and which corner cases
on different microarchitectures limit the applicability of
reverse-engineering techniques.

Acknowledgment

We thank the Deutsche Forschungsgemeinschaft (DFG)
for their support and Daniel Gruss for his review and fruit-
ful discussions, which influenced the work of this paper.
This work was funded by the DFG under grant number
503876675.

References

[1] AMD Developer Guides, Manuals and ISA Docu-
ments. 2020. URL: https : / / developer . amd . com /
resources/developer-guides-manuals/.

5

https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/


[2] AMD’s Zen CPU is now called Ryzen, and it might
actually challenge Intel. arstechnica, 2016. URL:
https://arstechnica.com/gadgets/2016/12/amd- zen-
performance-details-release-date/.

[3] Alessandro Barenghi et al. “Software-only Reverse
Engineering of Physical DRAM Mappings for Row-
hammer Attacks”. In: IVSW. 2018, pp. 19–24. DOI:
10.1109/IVSW.2018.8494868.

[4] Distribution of Intel and AMD x86 computer central
processing units (CPUs) worldwide from 2012 to
2022, by quarter. statista, 2023. URL: https://www.
statista.com/statistics/735904/worldwide-x86- intel-
amd-market-share/.

[5] Christian Helm, Soramichi Akiyama, and Kenjiro
Taura. “Reliable Reverse Engineering of Intel DRAM
Addressing Using Performance Counters”. In: MAS-
COTS. 2020. URL: https : / / ieeexplore . ieee . org /
document/9285962/.

[6] Yoongu Kim et al. “Flipping Bits in Memory with-
out Accessing Them: An Experimental Study of

DRAM Disturbance Errors”. In: SIGARCH (2014).
URL: https://doi.org/10.1145/2678373.2665726.

[7] Sai Prashanth Muralidhara et al. “Reducing mem-
ory interference in multicore systems via application-
aware memory channel partitioning”. In: MICRO.
2011. URL: https://dl.acm.org/doi/10.1145/2155620.
2155664/.

[8] Peter Pessl et al. “DRAMA: Exploiting DRAM Ad-
dressing for Cross-CPU Attacks”. In: USENIX Secu-
rity Symposium. 2016.

[9] Kshitij Sudan et al. “Micro-pages: increasing DRAM
efficiency with locality-aware data placement”. In:
SIGARCH. 2010. URL: https : / /dl . acm.org /doi /10 .
1145/1735970.1736045/.

[10] Minghua Wang et al. “DRAMDig: A Knowledge-
assisted Tool to Uncover DRAM Address Mapping”.
In: DAC. 2020. URL: https : / / ieeexplore . ieee . org /
document/9218599/.

6

https://arstechnica.com/gadgets/2016/12/amd-zen-performance-details-release-date/
https://arstechnica.com/gadgets/2016/12/amd-zen-performance-details-release-date/
https://doi.org/10.1109/IVSW.2018.8494868
https://www.statista.com/statistics/735904/worldwide-x86-intel-amd-market-share/
https://www.statista.com/statistics/735904/worldwide-x86-intel-amd-market-share/
https://www.statista.com/statistics/735904/worldwide-x86-intel-amd-market-share/
https://ieeexplore.ieee.org/document/9285962/
https://ieeexplore.ieee.org/document/9285962/
https://doi.org/10.1145/2678373.2665726
https://dl.acm.org/doi/10.1145/2155620.2155664/
https://dl.acm.org/doi/10.1145/2155620.2155664/
https://dl.acm.org/doi/10.1145/1735970.1736045/
https://dl.acm.org/doi/10.1145/1735970.1736045/
https://ieeexplore.ieee.org/document/9218599/
https://ieeexplore.ieee.org/document/9218599/

	Introduction
	Backgrounds
	Reverse-Engineering of DRAM Addressing Functions on AMD CPUs
	Determine the Threshold between Row Hit and Conflict
	Measuring the Number of Banks
	Detecting the Block Size
	Add Additional Addresses to the Groups
	Deriving the Addressing Functions
	Runtime Estimation

	Experimental Evaluation
	Limitations
	Related Work
	Conclusion and Future Work

