
SoothSayer: Bypassing DSAC Mitigation by
Predicting Counter Replacement

Salman Qazi
Google

Daniel Moghimi
Google

Abstract—In-DRAM Stochastic and Approximate Counting
(DSAC) is a recently published algorithm that aims to miti-
gate Rowhammer at low cost. Existing in-DRAM counter-based
schemes keep track of row activations and issue Targeted Row
Refresh (TRR) upon detecting a concerning pattern. However,
due to insufficiency of the tracking ability they are vulnerable
to attacks utilizing decoy rows. DSAC claims to improve upon
existing TRR mitigation by filtering out decoy-row accesses, so
they cannot saturate the limited number of counters available for
detecting Rowhammer, promising a reliable mitigation without
the area cost of deterministic and provable schemes such as per-
row activation counting (PRAC).

In this paper, we analyze DSAC and discover some gaps that
make it vulnerable to Rowhammer and Rowpress attacks.

The main focus of this work is a novel attack named Sooth-
Sayer that targets the counter replacement policy in DSAC by
cloning the random number generator. We describe and simulate
this attack, and establish its efficacy. Finally, we discuss other
weaknesses in DSAC.

I. INTRODUCTION

Rowhammer [12], [20] is a serious threat to the security and
reliability of modern computing systems. Since its original
discovery, there has been a steady stream of attacks and
exploits published against various server and mobile systems,
leaving existing countermeasures ineffective [2]–[5], [8], [13],
[16]. As DRAM cells get more dense, the Rowhammer effect
becomes harder to mitigate [10], [11], [16]—the closer the
cells are to each other, the greater the chance of accidental or
malicious disturbance from nearby cells.

Detecting Rowhammer with counters is one of the most
ubiquitous approaches in literature [15], [18], [19], [21], [23],
[24], [26]. While the academic literature largely focuses on
placing counters in the memory controller, the ubiquitous in-
dustry solution thus far (known as TRR) places the counters in
the DRAM chip. The main idea is to keep a count of activates
to various DRAM rows, allowing identification of aggressor
rows before they exceed the Rowhammer threshold (number
of accesses required to flip bits). The attack is then mitigated
via a targeted-row-refresh (TRR) that refreshes DRAM rows
(cells) neighboring the aggressors. TRR refreshes take place
during a DRAM Refresh command. An ideal deterministic
counter-based mitigation such a Panopticon [1] requires a
counter per row imposing an expensive area cost for DRAM
manufacturers. A similar scheme been proposed in a recent
JEDEC specification [9] as ”Per Row Activation Counting”
(PRAC). Additionally, there are deterministic algorithms in

literature such as Graphene [18] (implemented in the memory
controller) and ProTRR [17] (implemented in DRAM) that
utilize frequent item counting schemes. These can account
for all Rowhammer activity if the threshold is sufficiently
large and enough counters are provided. As the Rowhammer
threshold decreases, the number of counters required for a
correct implementation increases. According to the authors of
DSAC, who are affiliated with a memory vendor, the number
of counters used in these implementations are unacceptably
large for a memory vendor to implement within their designs.
To avoid this cost, deployed counter-based mitigations employ
fewer counters than necessary and are often probabilistic.
Due to this limitation, recent Rowhammer techniques [2],
[8], [13] have managed to bypass TRR with decoy DRAM
row accesses, where the limited number of available counters
get over-saturated hiding aggressor DRAM accesses exploiting
Rowhammer.

Furthermore, the Rowpress attack [16] identifies another
limitation of existing counter-based DRAM mitigations due
to the passing gate effect of DRAM cells [6]. They showed
that the duration of row activation also contributes to bit flips
in nearby DRAM rows. Therefore, if attackers can keep a
row activated for a longer time with a smaller number of
memory accesses, it may go undetected as it does not pass
the Rowhammer threshold.

Recently, In-DRAM Stochastic and Approximate Counting
(DSAC) [6] aims at solving the limitations of low-cost counter-
based Rowhammer mitigations implemented within DRAM.
One of the limitations of approximate tracking algorithms with
limited counters is that they have deterministic replacement
policies, which is inadequate and can easily be bypassed [2],
[8]. DSAC tries to solve this limitation using a probabilistic
replacement algorithm. At a high level, when all the counters
are allocated, this algorithm relies on an LFRS-based random
number generator to decide if a counter should be replaced
with a new aggressor row. In theory, this should make it
impossible for an attacker to deterministically issue decoy-row
accesses within a refresh interval to evict an aggressor row
from the counter table. Without the ability to reliably evict a
counter, it is hard for the attacker to hide the real aggressor
among the decoy-row accesses.

In this paper, we propose the SoothSayer attack that predicts
this stochastic replacement policy to hide Rowhammer attacks
and overcome DSAC-based TRR. First, we show that we



can adopt the previously-proposed Rowhammer side-channel
techniques [5] to reverse-engineer the LFSR taps in an offline
phase of the attack. Once the LFSR taps (which are constant
across all devices) are known, an attacker still has to guess the
LFSR seed to predict the replacement polcy and issue decoy-
row accesses at the right time. Our second observation is that,
for a 20-bit LFSR, as suggested in the DSAC architecture,
we can perform a brute-force attack against the LFSR state
efficiently and use the seed guesses to construct Rowhammer
patterns that are more likely to succeed than blind fuzzing.

We simulate DSAC and SoothSayer on an independent
Discrete Event Simulator, and our results show that the offline
phase of the attack takes an insignificant data collection time
and ≈ 4, 300 seconds of compute time, while the online
portion of the attack takes ≈ 1 hour of DRAM bus time.
Furthermore, our simulation shows that when executed in
parallel, the online phase can succeed in less than a minute
against one bank each from 96 separate chips.

Finally, we discuss the limitation of the passing-gate effect
AKA Rowpress [6], [16] mitigation that is also proposed in
the DSAC paper and discuss potential improvements.

In summary, our contribution includes
• SoothSayer attack that bypasses the DSAC LFSR-Based

Replacement Policy, hence the TRR mitigation.
• Simulating SoothSayer attacks and reporting its perfor-

mance.
• Discussing the limitation of DSAC and potential improve-

ments and future directions.

II. BACKGROUND

In this section, we provide an overview of Linear feedback
shift registers (LFSR) as used in DSAC, target-row refresh
(TRR), and the DSAC mitigation.

A. Linear feedback shift registers (LFSR)

LFSRs are an efficient mechanism to generate pseudo-
random bits in hardware. An LFSR consists of some number
of bits of internal state. Each time the LFSR is invoked, it
produces a single output bit. This output bit is also XORed
against some of the bits in the internal state to arrive at the next
state. The bits XORed are determined by the tap configuration.
An LFSR is deterministic: the series of states that it passes
through and the sequence of the output bits it produces are
determined by the tap configuration and the initial state.

There are 2n possible tap configurations for an n-bit LFSR.
The period of an LFSR is the number of iterations after
which the output will start repeating. A maximum length n-bit
LFSR has a period of 2n − 1 bits. A minority of LFSR tap
configurations result in a maximum period.

DSAC uses a 20-bit LFSR. The maximum period LFSR
of 20 bits will start repeating its output after 1048575 bits.
Although there are 220 possible tap configurations for 20-bit
LFSRs, there are only 24K possible configurations [14] that
yield the maximum period (≈ 2.2%).

To simplify the analysis, we will assume that a maximal
period LFSR is used in the DSAC implementation. We leave

the extension of this attack to non-maximal LFSR tap config-
urations for future work.

B. Target-Row Refresh (TRR)

DRAM rows are refreshed periodically to keep DRAM
cells stable and reliable. In absence of periodic refreshes, the
data in the DRAM cell will gradually disintegrate. This is
referred to as the retention effect. In addition to retention
effect, DRAM also needs to deal with disturbed effects such as
Rowhammer [12] and RowPress [16]. However, in absence of
any other available time to handle disturbance, the DRAM uses
a portion of the Refresh command time to issue Rowhammer
mitigations. In order to detect the Rowhammer aggressor rows
for these mitigations, a proprietary algorithm is implemented
in DRAM. TRR is an umbrella term for these proprietary
algorithms. Prior research [5] shows that these algorithms
often contain counters combined with probabilistic elements.
While TRR is implemented in DRAM, the academic literature
often focuses on solutions that can be implemented in the
host’s memory controller [15], [18], [19], [21]–[24], [26].

In the industry, one example of a host-side implementation
is Intel’s Pseudo-TRR (pTRR) which is not to be confused
with TRR. A challenge of the host side implementations
is that it is difficult for the host to identify rows that are
neighbors in a bank. This situation has been improved by the
recent inclusion of Direct Refresh Management (DRFM) in
the DDR5 specification [9].

C. In-DRAM Stochastic and Approximate Counting (DSAC)

DSAC [6] (in-DRAM Stochastic and Approximate Count-
ing) is a Rowhammer defense intended to be implemented
inside DRAM chips. DSAC envisions an array of counters,
which each counter in the array can be allocated to a specific
DRAM aggressor row. When a row is activated, if it has an
entry in the counter table, the counter is incremented. If the
row does not have a counter, and there are available counters,
a counter is allocated to the row. Finally, if all the counters are
occupied, then a biased coin is flipped to decide if the counter
with the lowest value (min count) should be assigned to the
new row. The bias of the coin, referred to as replacement
probability is 1/(1+min count). Figure 11 in Hong et al. [6]
illustrates this algorithm.

The toss of the biased coin flip is performed using a
pseudo random number generator (PRNG) based on a linear
feedback shift register (LFSR). The PRNG generates 20 bit
fixed point numbers, which are compared against the re-
placement probability to decide if replacement should take
place. For example, if the replacement probability is 0.2, then
replacement occurs iff prng output <= 0.2. The PRNG
output is generated by concatenating consecutive bits from
the LFSR. The internal state of the LFSR is 20-bits wide
as well. The LFSR is reseeded once all the rows in DRAM
have gone through a periodic refresh (i.e. every 64ms). While
DSAC offers Inequality (6) [6] as a method of selecting when
to perform a TRR mitigation, it explicitly states that other
strategies can be adopted. As far as we can tell, DSAC does not



consistently use Inequality (6) in its own evaluation. Inequality
(6) is a heuristic at best: it is computed over approximate
quantities and does not perform particularly well. We replace
Inequality (6) with a more aggressive policy that performs
a TRR mitigation on every refresh. DSAC is known to be
susceptible to adversarial patterns that stem from non-uniform
probability across different positions in a refresh interval [7],
similar to the vulnerabilities identified in real DRAM chips [5].
However, we propose SoothSayer attack that shows that even
if the non-uniformity in DSAC was fixed, there is yet another
possibility to bypass this mitigation.

III. SOOTHSAYER

In this section, we cover the threat model, the identified
weakness in DSAC, and the offline and online phase of the
SoothSayer attack bypasing DSAC-based TRR.

A. Threat Model

We assume that the attacker is aware that DSAC is im-
plemented in the target memory chip and has access to an
instance of the memory chip for offline analysis. The attacker
does not know the tap configuration of the LFSR used in the
memory chips. It is reasonable to assume that the same tap
configuration is used in every single instance: as this is part
of the circuit design of the chip. The PUFs on each chip has
unique properties, and the attacker cannot simply generalize
the seed values on the target chip using the chip they possess.
Following the original Rowhammer attack threat model [12],
the attacker does not have physical access to the memory
chip during the online phase of the attack. Since we are not
aware of any actual implementation of DSAC, our study will
target a simulated implementation of DSAC to the best of our
knowledge based on the published design and architecture [6].

B. The Weakness

The weakness that we identified in the DSAC implemen-
tation is that the LFSR has only a 20 bit internal state.
This has two implications. First, the number of possible tap
configurations of the LFSR is only 220 of which only 24K
are maximum period LFSRs [14]. Secondly, the number of
possible values for the internal state at any given point in
time is only 220. The attacker can split the problem into an
offline and an online phase.

Since the LFSR taps are the same across different instances
of DSAC, the attacker can figure out the taps offline. The
input for this process are the replacement decisions made by
DSAC which can be leaked via side channels. Although the
Berlekamp Massey Algorithm [25] can be used to generate
LFSR taps from LFSR output bits, this algorithm requires
the availability of contiguous raw output bits of the LFSR.
Since DSAC processes the output of the LFSR to make its
replacement decisions, the raw output bits are not available
via the side channels. However, for a 20-bit LFSR, brute force
should be sufficient.

On the other hand, the seed chosen and updated for LFSR
every 64ms is based on a Physical Unclonable Function (PUF)

which is unique to each chip. As a result, this phase must be
handled on the system under attack. However, given that there
are only 220 possible seeds and an attack attempt is shorter
than 64ms, the attacker can brute force the seed.

C. Offline Phase

For the offline phase, let’s assume that we have a platform
that permits us to violate the JEDEC DDR4 specification in
terms of refresh requirement, as it has been demonstrated in
the past [5]. We illustrate the offline phase in Algorithm 2
with utility functions specified in Algorithm 1.

D. Known State

To probe the PRNG and the LFSR, it is useful to bring
DSAC into a deterministically known state. A particularly
useful known state is to have all of the counters be occupied
and contain the same value, let’s say 2. First, we call the
DRAINQUEUES procedure on line 9 to drain all the counters.
This procedure issues enough refreshes to mitigate all the
activity tracked by the counters. Assuming that each refresh
(REF) command takes care of the victims of a single aggressor,
and there are 20 counters, we will need 20 REF commands to
clear the counter table. The counter table is now empty.

Now, we would like to fill the counter table with 20
aggressor rows and set each counter to 2. This is done by
opening and closing each of those rows twice, as shown by
the iteration from line 10 to 13.

At this point, we know that the next 20 activates face a
biased coin flip of 1/3 to enter the counter table. We would
like to attempt to enter some items into the counter table and
figure out if we succeeded or not. Our success or failure will
give us information about the LFSR being used. Since there
is no direct interface that reveals information about DSAC
decisions, we must resort to a side channel.

E. Rowhammer as a Side Channel

In this section, we consider some options for side channels
to use to glean information about DSAC decisions. UTRR [5]
utilizes the retention side channel to obtain information about
TRR decisions. Blacksmith [8] has a lesser known section VI-
C that analyzes fuzzing efficacy using the Rowhammer side
channel.

There are trade offs that stem from the choice of side
channel. On one hand, retention times are much longer than
the amount of time it takes to access a row TRH times.
Additionally, stabilizing the retention side channel requires a
good control over temperature. On the other hand, utilizing
the Rowhammer side channel requires hiding the side channel
setup activity from TRR (or in this case DSAC). This requires
decoy activity which has to be tailored to the implementation
that is being attacked. Before utilizing either side channel
on a real chip, we would have to profile a group of rows
to determine either their retention time or their Rowhammer
threshold, depending on the selected side channel. However,
this is not a concern when simulating the attack. We selected
the Rowhammer side channel as we were able to construct the



Algorithm 1 Utility Procedures for SoothSayer
1: procedure DRAINQUEUE
2: for j in range(ncounter) do
3: Refresh()

4: procedure ACTIVATECANARY(idx)
5: for j in range(ncanary) do
6: ActPre(Canaryj)
7: idx← idx+ 1

8: procedure HIDEACTIVITY(idx)
9: for i in range(TRH) do

10: C ← 9
11: for j in range(C × ncounter) do
12: ActPre(Decoyj)
13: idx← idx+ 1

appropriate decoy activity to mask our side channel setup. To
use this, we have to first setup the side channel by hammering
the 16 canary rows to TRH/2 on line 6. This activity is hidden
from DSAC by an appropriate preamble and postamble of
many activates to a multitude of rows. This is accomplished
by the procedure HIDEACTIVITY, called on lines 5 and 8.

After setting up the side channel, we proceed to reach a
deterministically known state (see previous section).

Next we issue one activate to every canary row to stimulate
DSAC by calling ActivateCanary on line 17. Either these rows
will enter the counter table or they will be rejected. This
decision will be based on the random numbers generated by
the algorithm. Our goal is to leak these decisions.

Finally, we complete the side channel by issuing remaining
TRH/2 activates on line 19. Then, we look for and record
bit flips in our map, in the loop on lines 21-23. Presence of
a bit flips informs us of a lack of mitigation for that specific
aggressor. Finally we prepare for the next iteration by draining
the queue once more on line 24.

We use the side channel to collect pairs (x,y) where x is the
index of the ACT command and y is a boolean value telling
us whether the activated row was mitigated or not. We collect
a total of 80 data points, as 5 groups of 16 samples each. Each
group of samples is temporally contiguous.

F. Brute Force Comparison

For each of the 24K possible maximum period LFSR tap
configurations [14] we generate the stream of decisions that
these configurations will produce under the specific scenario
of p = 1/3. We compare these decisions against the decisions
we observed via the side channel, and identify the correct tap
configuration. We observed that the identified tap configuration
is always unique: that is, for the given data there is only once
choice of tap configuration that matches that data.

G. Online Phase

Algorithm 3 illustrates the online phase of the attack. The
attacker clones the LFSR with the taps found in the offline
phase. For each attempt in the online phase, the attacker sets
the state of the LFSR to a randomly selected seed (lines 16

Algorithm 2 Offline Phase of SoothSayer
1: procedure OFFLINEATTACK
2: idx← 0, idxsample ← 0
3: f ←Map()
4: for iteration in range(5) do
5: HideActivity(idx)
6: for i in range(TRH/2) do
7: ActivateCanary(idx)

8: HideActivity(idx)
9: DrainQueue()

10: for i in range(2) do
11: for j in range(ncounter) do
12: ActPre(Decoyj)
13: idx← idx+ 1

14: if iteration == 0 then
15: idx← 0
16: idxsample ← idx
17: ActivateCanary(idx)
18: DrainQueue()
19: for i in range(TRH/2) do
20: ActivateCanary(idx)

21: for i in range(ncanary) do
22: flipsi ← CheckF lips(i)
23: f.insert(idxsample + i, f lipsi)

24: DrainQueue()

25: ParallelSearch(f)

and 21). Each refresh interval in the online phase begins by
accessing the number of decoys equal to the number of DSAC
counters (lines 2-4). This is to ensure that if there is any room
in the counter table (as a result of the refresh), it is filled up
with the decoys. While doing so, the attacker advances the
PRNG, since the DSAC implementation advances the PRNG
on every activate and not just when random numbers are
consumed.

For the rest of the refresh interval (loop from line 6-12), the
attacker consults the cloned random number generator. If the
next PRNG output is greater than on equal to 219 the attacker
knows that it will fail a biased coin test for any bias >= 1/2.
This means that it will fail the test for any replacement attempt
made by DSAC. If this is the case, the attacker will issue an
access to the intended aggressor. Otherwise, one of the decoy
rows is accessed. Once the attacker has done enough accesses
to the aggressor row (TRH + a little bit more) the attacker can
once again update the seed. The online phase continues until
bit flips are detected.

H. Implementation

Since DSAC is not known to be available on real DRAM
chips, we implemented SoothSayer in a discrete event simula-
tor. The simulator does not have a data model: i.e. it does not
simulate flipping of bits on victim rows as a result of activity
on the aggressor row. For the side channels, our simulation
deems the victims to have flipped bits when the aggressor



Algorithm 3 Online Phase of SoothSayer
1: procedure ONEREFRESHINTERVAL
2: for i in range(ncounters) do
3: Access(decoyi)
4: unused← PRNG()

5: accaggr ← 0
6: for i in range(ncounters, nREFI) do
7: if PRNG() ≥ 219 then
8: Access(aggressor)
9: accaggr ← accaggr + 1

10: else
11: idx← i mod ndecoys

12: Access(decoyidx)

13: return accaggr

14: procedure ONLINEATTACK
15: totalaggr ← 0
16: ReSeedLFSR(Random(1, 220))
17: while VICTIMHASNOFLIPS() do
18: acc← ONEREFRESHINTERVAL()
19: totalaggr ← totalaggr + acc
20: if totalaggr > TRH + 2 ∗ nREFI then
21: ReSeedLFSR(Random(1, 220))
22: totalaggr ← 0

row’s hammer count reached the Rowhammer threshold. The
hammer count is reset whenever the row is refreshed as part
of Rowhammer mitigation.

I. Evaluation

For the on-device portion of the offline phase, we use the
time-keeping in the simulator to evaluate the wall-clock time it
takes. The time is insignificant: it takes < 2 seconds in DRAM
commands including 300 REF commands. Note that the seed
in DSAC is reinitialized every 8192 REFs, and so the small
number of REFs is needed to keep the seed the same during
the data collection phase. Also note that some commands are
absent in the simulation (e.g. writing memory contents) that
would be needed on a real system. But, the time should not
exceed single digit seconds.

For the brute force portion of the offline phase, we use 96
cores available to us on a VM to execute the search in parallel.
The total compute time taken across all the cores is ≈ 4, 300
seconds. The task finishes in 44 seconds due to parallelism.

For the online portion of the attack, we target 96 instances of
DSAC in parallel hoping that one will break. The time for this
is measured using the timekeeping in the simulator. Based on a
sample of 5 attempts targeting one bank each on 96 simulated
chips, the amount of DRAM access time (aggregated across
all targeted chips) is ≈ 1 hour. The wall clock time until first
failure assuming 96 individual chips are attacked in parallel
averages to ≈ 37 seconds.

SoothSayer is efficient in the sense that it utilizes the infor-
mation about the LFSR to minimize the number of accesses
to the intended aggressor, which may help the attacker evade

system level detection, such as Intel’s Pseudo-TRR. In our
attack, against a threshold of 10K hammers, for each seed
guess, the attack utilizes only 10,512 accesses to the main
aggressor.

IV. DISCUSSION

SoothSayer exploits the limited number of bits in the
LFSR in DSAC. The offline phase of the attack is currently
brute force, but the attacker will need a better strategy for
a larger LFSR. Given the existence of Berlekamp–Massey
algorithm [25], this is not entirely unfathomable. However,
extending the LFSR to 64-bits will make the online phase of
the attack unfeasible.

In addition to SoothSayer, DSAC is also vulnerable to the
types of pattern first highlighted by UTRR [5] on real DRAM
chips. Indeed we found a weakness similar to the one exploited
by the pattern for ”Vendor A” from that paper, and similar to
what is described in [7]. In particular, the replacement strategy
in DSAC favors rows that have been accessed earlier in the
refresh interval over those that have been accessed later. An
easy way to observe this is to consider the row that is accessed
just before a REF command. If the row is sampled, it will
never get replaced. However, if we consider the immediately
previous activate, the sampled row will have one chance to
get replaced (based on the bias dictated by the lowest valued
counter). If we follow this pattern all the way to the beginning
of the refresh interval, the row activated there has the highest
number of chances to get replaced. This imbalance appears
to be sufficient to cause DSAC to fail, permitting a row to
exceed TRH . The attacker can simply place their attack at the
beginning of the refresh interval and then fill the remaining
interval with decoys. The attacker repeats this for sufficient
number of refresh intervals to reach the necessary TRH .

Additionally, the handling of RowPress in DSAC appears
to be inconsistent. While DSAC takes RowPress into account
when incrementing counters, it does not account for it during
the replacement policy. Given the disturb that arrives with a
single RowPress activate, perhaps it should be favored for
admission into the counter table with a higher replacement
probability.

A larger problem with DSAC (and with any scheme that
mixes probability with counters) is that it is not possible to
prove it analytically. This makes it hard to recommend fixes
for the issues that we have found: there is no guarantee that
a purported fix will not introduce a different issue with an
unknown access pattern. We recommend that any probabilistic
schemes should have an analytical framework that underpins
their correctness for a given Mean Time to Failure (MTTF)
rather than relying on empirical results.

V. CONCLUSION

DSAC is vulnerable to adversarial access patterns that stem
from multiple issues in its design. The issues range from
generation of pseudo-random numbers to their proper usage,
to correctly dealing with all of the known phenomena. While it



may be possible to improve some of these gaps with a higher-
entropy PRNG and other implementation considerations, the
cost and effectiveness of such improvements will be chal-
lenged by security researchers.

The use of cryptographic blocks, e.g., LFSR-based PRNGs
and PUFs, to hide Rowhammer mitigation decisions ultimately
results in a probabilistic defense, which relies on the entropy
and quality of the cryptographic blocks. We expect that, if such
mitigations are deployed in real DRAMs, it motivates attackers
to reverse-engineer the underlying cryptographic blocks to
identify gaps and conduct efficient Rowhammer attack. In
particular, in SoothSayer, we demonstrated Rowhammer-based
cryptanalysis of the DSAC, as a new attack methodology,
which has not been considered in previous work.

REFERENCES

[1] T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A
complete in-dram rowhammer mitigation,” in Workshop on DRAM
Security (DRAMSec), vol. 22, 2021, p. 110.

[2] P. Frigo, E. Vannacc, H. Hassan, V. Van Der Veen, O. Mutlu, C. Giuf-
frida, H. Bos, and K. Razavi, “Trrespass: Exploiting the many sides of
target row refresh,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 747–762.

[3] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 245–261.

[4] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in Detection of Intrusions
and Malware, and Vulnerability Assessment: 13th International Confer-
ence, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings
13. Springer, 2016, pp. 300–321.

[5] H. Hassan, Y. C. Tugrul, J. S. Kim, V. Van der Veen, K. Razavi, and
O. Mutlu, “Uncovering in-dram rowhammer protection mechanisms:
A new methodology, custom rowhammer patterns, and implications,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 1198–1213.

[6] S. Hong, D. Kim, J. Lee, R. Oh, C. Yoo, S. Hwang, and J. Lee,
“Dsac: Low-cost rowhammer mitigation using in-dram stochastic and
approximate counting algorithm,” arXiv preprint arXiv:2302.03591,
2023.

[7] A. Jaleel, S. W. Keckler, and G. Saileshwar, “Probabilistic tracker
management policies for low-cost and scalable rowhammer mitigation,”
arXiv preprint arXiv:2404.16256, 2024.

[8] P. Jattke, V. Van Der Veen, P. Frigo, S. Gunter, and K. Razavi,
“Blacksmith: Scalable rowhammering in the frequency domain,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 716–
734.

[9] JEDEC DDR5 SDRAM Standard, JEDEC, April 2024, v1.30.
[10] J. Juffinger, S. R. Neela, M. Heckel, L. Schwarz, F. Adamsky, and

D. Gruss, “Presshammer: Rowhammer and rowpress without physical
address information.”

[11] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 638–651.

[12] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[13] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat, E. Shiu,
M. Nissler, and D. Gruss, “{Half-Double}: Hammering from the next
row over,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 3807–3824.

[14] P. Koopman, “Maximal length lfsr feedback terms,”
2024, ”[Online; accessed 05-Jun-2024]. [Online]. Available:
https://users.ece.cmu.edu/ koopman/lfsr/

[15] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “Twice: Preventing
row-hammering by exploiting time window counters,” in Proceedings of
the 46th International Symposium on Computer Architecture, 2019, pp.
385–396.

[16] H. Luo, A. Olgun, A. G. Yağlıkçı, Y. C. Tuğrul, S. Rhyner, M. B. Cavlak,
J. Lindegger, M. Sadrosadati, and O. Mutlu, “Rowpress: Amplifying read
disturbance in modern dram chips,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–18.

[17] M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “Protrr: Principled yet
optimal in-dram target row refresh,” in 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 2022, pp. 735–753.

[18] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee,
“Graphene: Strong yet lightweight row hammer protection,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 1–13.

[19] M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling
low-overhead mitigation of row-hammer at ultra-low thresholds via
hybrid tracking,” in Proceedings of the 49th Annual International
Symposium on Computer Architecture, 2022, pp. 699–710.

[20] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

[21] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-based tree
structure for row hammering mitigation in dram,” IEEE Computer
Architecture Letters, vol. 16, no. 1, pp. 18–21, 2016.

[22] M. Son, H. Park, J. Ahn, and S. Yoo, “Making dram stronger against
row hammering,” in Proceedings of the 54th Annual Design Automation
Conference 2017, 2017, pp. 1–6.

[23] S. Vig, S. Bhattacharya, D. Mukhopadhyay, and S.-K. Lam, “Rapid
detection of rowhammer attacks using dynamic skewed hash tree,”
in Proceedings of the 7th International Workshop on Hardware and
Architectural Support for Security and Privacy, 2018, pp. 1–8.

[24] Y. Wang, Y. Liu, P. Wu, and Z. Zhang, “Detect dram disturbance error
by using disturbance bin counters,” IEEE Computer Architecture Letters,
vol. 18, no. 1, pp. 35–38, 2019.

[25] Wikipedia, “Berlekamp–massey algorithm - wikipedia,”
2024, ”[Online; accessed 06-May-2024]. [Online]. Available:
https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey algorithm

[26] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi et al., “Block-
hammer: Preventing rowhammer at low cost by blacklisting rapidly-
accessed dram rows,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 345–
358.


